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Summary: Bridge flutter phenomenon presents an important criterion of instability,

which has to be considered in the bridge design phase. This paper presents different

bridge flutter methods which can be used to solve the flutter problem, such as most

commonly used frequency-domain approach, then equivalent approuch in time-domain,

and the approximation based on the quasi-steady theory. A numerical example related to

the tipical bridge cross-section follows presented approaches.
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1. FLUTTER

Classic flutter is a type of the flutter, in which two degrees of freedom of the structure,
namely rotation and vertical translation, couple in a flow-driven unstable oscillation. The
motion is characterized by the fluid forces feeding energy into the system during one
cycle of its oscillation. This energy counteracts the energy absorptions by structural
damping. The critical condition is reached by the certain wind speed, called critical wind
velocity, related to the total zero damping, i.e. structural and aerodynamic damping
together. In addition, the structure oscillates with the same frequency in bending and
torsion (critical frequency).

1.1 Frequency Approach

Most commonly used formulation of the motion-induced forces (also called self-excited
or aeroelastic forces) is proposed by Scanlan and Tomko (1971). The method takes into
account aerodynamic parameters called flutter derivatives to define a linear aeroelastic
subsystem expressed through aeroelastic forces as:
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In these equations, K = Bw/U is the reduced frequency and H,, A4 (i=1..4)are the

flutter derivatives, ¢, =1/2 pU” is the kinetic pressure, o represents the air density, U
the mean wind velocity, B is the bridge deck width. Speciality of the proposed method
is that these coefficients are functions of reduced frequency and this dependency is
usually evaluated experimentally using the wind tunnel tests for a specific cross-
sectional shape of a bridge deck.

1.2 Solution of Flutter Equations

Once the aeroelastic forces are established (Eq. 1 and Eq. 2), the critical conditions, i.e.

critical velocity for the onset of flutter can be calculated. The simplest way to establish

critical wind velocity is to consider a rigid section model of the bridge deck with two

degrees of freedom (2DOF model), namely vertical z (heave) and torsional « (pitch).

The 2DOF equation of motion per unit length can be written as follows:
mi+czi+kz=1L Id+c,a+k,a=M, 3)

where L, and M, are self-excited forces presented in Eq. 1 and Eq. 2, m is mass and

ae?

I mass moment of inertia per unit length of the bridge cross-section and k_and £k, are
stiffnesses and c_and ¢, damping coefficients, for respective degrees of freedom.

For the case of coupled flutter critical condition, heave and pitch can be considered as
harmonic motion with the same circular frequency:

z(t) =z ,a(t) = ae™ 4)
After the substitution of Egs. 1, 2 and 4 in Eq. 3 eigenvalue problem of stability of

motion is formulated with flutter frequency and the critical wind speed as unknowns.
Details related to the implementation of this solution could be found in Mannini (2006).

1.3 Time-Domain Approach

The flutter derivatives are not well suited for the time domain simulations, as being
expressed as a function of frequency. As a counterpart to flutter derivatives in time
domain, non-analytical functions can be estimated. They describe the development of the
forces due to the sudden infinitesimal structural motions and these functions are called
the indicial functions. Then the history of motion can be seen as a series of these
infinitesimal step-wise increments. Under the assumption of linearity of load, the self-
excited forces in time domain (counterparts of Eq. 1 and 2) can be expressed as
convolutions of these indicial functions.

Usual practice to determine these functions is from the corresponding (measured) flutter
derivatives (Borri and Hoffer, 2000, Salvatori, 2007) taking the typical approximation of
representing the indicial function as a sum of exponential filters:

Ng, _
) ) =1- z a’ exp(=b""s) ®)

n=1
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where R=L or M and =2 /U and « ,s =2Ut/B is the non-dimensional time, " and
bl are non-dimensional coefficients, and N, is the number of terms chosen to

approximate the indicial function @, . Substituting harmonic motions into the

previously mentioned convolution integrals, the aeroelastic load is again expressed in
frequency domain, and in this form can be compared to the load based on flutter
derivatives (Eq. 1 and 2). In this way the relationships between indicial function
coefficients and flutter derivatives are obtained. Due to the nature of these relationships,

the indicial functions (with non-dimensional coefficients " and b as unknowns) are

then identified by means of nonlinear least square optimisation. Details of the method,
which is followed within this work, are described in Salvatori and Borri (2007).

1.4 Quasi-Steady Approximation

When the reduced frequency of oscillation is small the time needed by the fluid particles
to travel the bridge width (B/U) is small with respect to the period of oscillation of the
structure (2z/w). Consequently the fluid memory effects tend to become small and the
quasi-steady theory can be used instead of the unsteady theory. In the quasi-steady
approach at each time the forces do not depend on what happened before and the
structure is seen by the flow as it is stationary with its instantaneous values of
displacements and velocities. Expressions for self-excited forces using quasi-steady
approximation are:

dc z dC dc B
L =q,B|-| —L%+-C, |—+—La+|—L-C —a 6
ae ‘]0 |: (da D)U da (da D)IBZ U i‘ ( )
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C, are quasi-stationary coefficients which can be obtained normalizing mean along-wind
drag force D, an across-wind lift force L and a pitch moment M as:
D L M
CD (0!) = s C'L (a) = ’ CM ((Z) =

q,BLy q,BL, qoBzLB

with respect to the mean angle of flow attack and dC,/de are its first derivatives. Since

®)

these coefficients depend on geometry of the cross-section, they are usually obtained
experimentally from standard wind tunnel tests as a function of angle of attack « . The
dimensionless parameters S, represents the eccentricity parameter (Salvatori and Borri

(2007)).

2. NUMERICAL EXAMPLE

Experiments are performed in the boundary layer wind tunnel of Ruhr University
Bochum. The flutter derivatives are identified based on the forced vibration method. The
experimental rig also provides a set up for the investigation of a fixed bridge deck placed
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under a certain angle of attack. The bare symmetric box section is considered. Detailed
explanation of the measurements and the bridge cross-section can be found in Sarkié et

al. (2012).
The obtained quasi-stationary coefficients are plotted in Figure 1 as a function of the
angle of the flow attack. The oncoming wind velocity is around 4 m/s.
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Figure 1. Quasi-stationary force coefficients

All eight flutter derivatives used in Eq. 1 and 2 are presented in Figure 2. They are
presented for the range of reduced velocities till U,.,=30 (where U,., =U/Bf=2n/K).
Based on these functions, aeroelastic loads can be evaluated by the Eq. 1 and 2. Using
the 2DOF model described in Section 2.2 critical velocity can be estimated. In this case
structural properties of the used bridge deck are given in Table 1. The critical velocity is
obtained around Ucr=70.46m/s.

In addition to flutter derivatives evaluated from the wind tunnel tests, Figure 2 also
shows quasi-steady approximations of derivatives. They are evaluated comparing the
coefficients which stand beside considered displacements and its first derivatives in two
aeroelastic formulations: aeroelastic forces based on the derivatives (Eq. 1 and 2) and
quasi-steady approximation (Eq. 6 and 7). As it can be observed, not all flutter
derivatives have their counterparts in quasi-steady approximation. The missing ones are
H,* and A4* which are not decisive related practical examples of bridge acrodynamics.
It can be remarked that the approximations are following the same trend. Another
unknown in case of quasi-steady approximation is related to the choice of eccentricity

parameters /3, . They have strong influence on most important damping derivatives H)
and A} . Namely, parameters /3 describe the position of the neutral points for the
respective force components. In general case of the bridge section a common point does
not exist (Salvatori, 2007, Neuhaus and Hoffer (2011)). Therefore, S, parameters must
be evaluated from dynamic tests. Here following the procedure described in Neuhaus
and Hoffer (2011) parameters are evaluated from H, and A curves which leads to
p.=1.761 and B,=-1.378. Based on the quasi-steady flutter derivatives from Figure 2
critical velocity is evaluated as more conservative value Ucr=66.97m/s.

Based on these measured flutter derivatives, indicial functions are evaluated and selected
ones are presented in Figure 3. As it is already mentioned, as an outcome of the

nonlinear optimisation for each indicial function non-dimensional coefficients @ and

b are identified. Based on the relationships between indicial function and flutter
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derivatives, flutter derivatives can be approximated also using these non-dimensional
coefficients. This represents a quality check for identified indicial functions. Therefore
in Figure 2 corresponding flutter derivatives evaluated based on identified non-

dimensional coefficients @ and 5" (related to indicial functions in Figure 3) are also

included, showing satisfying agreement. These functions, in the form of convolution
integrals can also be used to estimate critical wind velocity. Namely, the equations of
motion presented in Section 2.2 can be solved for different velocities only with the
aeroelastic forces expressed in time domain. By increasing the velocity, the critical
velocity can be estimated as one which is causing unstable oscillations. Nevertheless,
due to the equivalency of two approaches, namely frequency and time, both solutions
should converge.
Table 1: Structural properties of considered bridge’

B[m]

m,[kg/m]

m,[kg/m]

f,[Hz]

f,[Hz]

Cz[']

ga[‘]

18.3

12820

426000

0.142

0.355

0.006

0.005

=l

Figure 2. Flutter derivatives obtained directly from the measurements, using quasi-
steady approximation and using optimized values from identified indicial functions

* Values are taken from @iseth at al. (2010), where the similar bridge deck section is considered with the use
of multi-modal analisys. Two heave and pitch modes are corresponding to the presented main coupled modes
from the related paper.
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Figure 3. Selected indicial functions

3. CONCLUSIONS

The main concern of this paper is to present different bridge flutter approaches. Three
different methods are presented: approach related to the frequency domain, approach
related to the time domain and an approximation based on the quasi-steady coefficients.
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AHAJIN3A ITPOBJIEMA ®JIATEPA Y BPEMEHCKOM
N ®PEKBEHTHOM JTIOMEHY

Pesume: @enomen ¢hnamepa mocmoea npedcmasba 6a3an KpUmMepujym cmabuiHocmu,
Koju mopa Oumu yszem y 003up MOKOM npoyecda npojekmosarbda. Y oeom paody cy
npuKasawe pasziuuume memooe 3a pewiasarbe npobiema ¢namepa, mely xojuma cy
npucmyn y (hpeKkgeHmHom OOMeHY, eKGUBALEHIMHU NPUCHYN Y 6DEMEHCKOM OOMEHY, Kao
U anpokcumMayuja Ha O6azu Keasu-cmayuoHaphe meopuje. Hymepuuku npumep munuunoz
RONpenyHo2 npeceka Mocma npamu npuKa3aHe nPucmyne.

Kuyune peuu: @namep, pewerve gpramepa, mooenu Hecmayuonaproz onmepeheroa
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