t
6 INTERNATIONAL CONFERENCE

Contemporary achievements in civil engineering 20. April 2018. Subotica, SERBIA

ON DYNAMIC VIBRATION ABSORBER MODELS
FOR HARMONIC EXCITATION

Dragan T. Spasi¢?
Aleksandar S. Okuka 2 UDK: 534.1:519.87
DOI: 10.14415/konferencijaGFS2018.018
Summary: A primary mass attached through a solid horizontal rod to the wall, able to
slide without friction along the horizontal line under a periodic force modeled by a sine
function, and an added mass attached to the main one through another horizontal solid
rod, also able to slide along the same line without friction, represent a problem
encountered in almost all textbooks on mechanical vibrations. However, many of the
books consider conditions ensuring zero steady-state amplitude of the primary mass and
just several of them consider conditions ensuring either reduction of the primary mass
amplitude or cutting one down as much as possible. Once again, in the whole class of
books, one can find the rods of either Hookean or the Kelvin-Voigt type, i.e. linear
springs or linear springs connected in parallel to dashpots. In this work, the vibration
absorbing conditions ensuring the reduction of the primary mass steady-state amplitude
will be stated for the Kelvin-Zener model of viscoelastic rod and its fractional
generalization. The obtained conditions will be related to the restrictions on coefficients
in these models that follow from the Clausius-Duhem inequality. The proposed model
could be used for the study of energy dissipation in mechanical systems incorporating
polymers, elastomers, living tissues and other real materials.

Keywords: Passive vibration control, fractional Kelvin-Zener model, Clausius-Duhem
inequality

1. THE GENERAL MODEL

In order to cut down as much as possible the amplitude of forced vibration, one adds
another single degree of freedom system of the same type. One may start with the
general case, the fractional Kelvin-Zener model, described by two coupled differential
equations of real order, and get all the declared cases as the special ones. Thus, consider
motions of the two-degrees of freedom system presented in Fig. 1 with the mass denoted
by M as the primary one, and the mass denoted by m as the added one. For simplicity
reasons both rods are assumed to be of the same length and cross-sections say L and
A, respectively and to deform in uniaxial, isotermal deformation. Let a
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force f, sin Wt acts on the primary mass and let x(t) and y(t) be the coordinates
describing the positions of the masses in time instant t respectively, see Fig. 1.
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Figure 1 System under consideration

Assuming that there is no sliding friction in the system and that both rods are
undeformed in the initial state, the Newton axiom and the Newton-Laplace principle
applied, lead to

qu::} =—p T g +fDSiTlTr'VtJ M}-"::} = —q, (1)

x(0) = 0,xV(0) = 0,p(0) = 0,y(0) = 0,y'V(0)=0,q(0) =0, (2

where pand q represent the forces within rods respectively (-)'**' = d*{-}/dt¥, denotes

k - th integer order derivative with respect to time t. Introducing the left derivative of
real order in the standard Riemann-Liouville form, aka fractional derivative, denoted by
(% = dv()/def, 0 =y = 1, see [1]

dv i d 1 “u(g)as
ar &
o () = Tdatri—a)l, -8

where I" is the Euler gamma function I'(z} = J’: t2-Le~Tdt, to be used for y = a. 8, the
constitutive axioms attached to this system reads

p Erd i
P+ Tpa 'pﬁ} = %{x + Txrr'xﬁ}l

3)

[ Egd . N
q+Tq|g.q-.|g:':ibr—x-'—r}_'g-{}:'-.lg:'_xmlg}]l (4)

TI.

According to the general theory, see [2,3], the coefficients in axioms (3) and (4) are to
follow the consequences of the second law of thermodynamics, i.e. the Clausius-Duhem
inequality, that are
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E,. =0, Tpe = 0, Tea = Tpa (5)
EE =0, Tpp =0, Typ = Tqf s (6)

Since 80s of the previous century it was shown that the chosen axioms is very useful in
modelling rheological and structural behavior of many real materials: elastomers,
polymers, living tissues, see [5-7].

2. THE ABSORBER CONDITION FOR THE KELVIN-ZENER MODEL

One may declare a desirable state of the system to be the one where x » O,p » 0
together will all the derivatives of these variables, leading to

Ed4 1

(l — %?nj}:) sinilt + (qu — T}'ETE)";?{:_J&H} =0, @)

where 5,(—g, 1) = 7,(-1)/ n¥+L2+1-5r=1(g + 25 + 2) stands for the Riemann-
Liouville derivative of sinfit of order b, see [4, p. 355]. Note that S5.(—1,02)

coincides with flcos (f2t), see [4, p.318]. Also, due to independence of sine and
5.(—1,12) itshould be

(1-22—2)=0 (rp—1p——)=0, 6)

L mn? ma2

what corresponds to zero value of the steady-state amplitude of the primary mass. Note
that due to (6) conditions (8) cannot be satisfied for the real materials. Therefore, the
amplitude of the primary mass cannot be zero, namely for real materials it can only be
reduced.

3. THE SPECIAL CASES PRO ET CONTRA

The special cases of the rods in the problem read:
=T,.,.=0,
Tgp = Ty = 0, ©

corresponding to the linearly elastic i.e. Hookean material. The vibration absorbing
condition reads
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m0® = 22 (10)

as stated in all the books on mechanical vibrations. Actually, with (9), the axiom (4)
reduces to the Hook law established in 1676. Note that in 1690 Leibnitz wrote that the
relation between extension and stretching force should be determined by experiment.
Also note that in 1973 in the famous Encyclopedia of Physics Vol. Vla/1,Mechanics of
Solids I, edited by C. Truesdell ed., Springer-Verlag, Berlin, in the chapter on The
Experimental Foundations of Solid Mechanics, J.F. Bell, stated the experiments of 280
years have demonstrated amply for every solid substance examined with sufficient care,
that the strain resulting from small applied stress is not a linear function thereof. Besides
this model does not satisfy (6) and cannot cover any real material. Thus (10) cannot be
used for vibration control of real systems.

Next, one may try with the Kelvin-Voigt viscoelastic model corresponding to
a=f=1 and
Tiill = ﬂ_.
qu =0 (11)

in (3), (4). This model is frequently seen in the books on vibration theory. Note that this
model, as the previous one, does not satisfy the restrictions that follow from the entropy
inequality (5), (6) so one cannot expect it to work for real materials. Actually, this model
does not cover a very simple or real deformation pattern, RDP for short, corresponding
to the ramp-and-hold of strain and then determining the stress relaxation in the
experiment, see [8] shown in Fig. 2.

£,=const.
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Figure 2 Strain (a) and stress (b) corresponding to real deformation pattern

Recognizing e =g /4 and = = y /L itis obvious that for the following strain
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t_I?{t U:‘_::t:_::t;‘.
e(t) = g, = const =

there will be jump of stress in (4), for T3 =0 and x = 0. However that jump cannot

be recognized in any real experiments see [9]. So if the model, cannot cover that very
simple deformation pattern how it can be used in more complex situations.

Finally, consider models that follow the pattern presented in Fig. 2 for real materials.
One such a model is the standard linear viscoelastic solid aka the Kelvin-Zener model,
see [7], obtained form (3), (4) with (5), (6) as the special case for @ = g = 1. For this
kind of materials the measure of primary mass amplitude reduction can be obtain from
(7) as

(l - Eiﬂﬁ) sinflt + 1N (ng - T},ggi—AL) cos 2t = 0, (12)

z miaz

as before in case of x & 0, p = 0 together will all the derivatives of these variables, this
condition reduces to

(1 E,A4 1 )_ﬂ ( E,A4 1 )_ﬂ
L mn*) ™ Tap ~ Tye L mn3

and due to inequalities that follow from the second law of thermodynamics
T,1> Ty = 0 it cannot be satisfied. Thus, as for the fractional case in the case of

standard linear viscoelastic body the amplitude of primary mass cannot vanish, it can
only be reduced.

In conclusion one may say that the motion of primary mass attached to real
viscoelastic rods under the action of harmonic excitation cannot be ceased, just reduced.
The conditions (7) and (12) can be used as a measure of this reduction.
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O MOJAEJIMMA ITMHAMNYKOI' AMOPTU3EPA 3A
CJIYUYAJ XAPMOHUJCKE NOBY JIE

Pesume: [Ipumapna maca modce 6e3 mpersa 0a Kiuu noO XOpU30HMAIHOM NPAsyy noo
Oejcmeom nepuoduune cuie cuHychoz obauka. Maca je npexo suckoeracmuunoe wimanda
sesana 3a Henokpemuu 3ud. C Opyee cmpane npumapHe mace HPeKoO Opy2oe
BUCKOETACMUYHOZ WMANa N06e3aHd je joul jeOHa Maca Koja modxce 0a Kiusu 6e3 mperoa
no ucmom npasyy. Osaj npobnem je deo 20mogo ceux yubeHuxa u3 meopuje ocyurayuja.
Melymum, mHo2U 00 mux yubenuxa pazmampajy yciose nod kojuma e amniumyoa
ycmasmeHnoe Kpemaroa npumapHe mace Oumu Hyid, a Camo HeKu 00 FUX 2080pe O
DPeOyKYuju unu cmarbery me amnaumyoe wmo je moeyhe euuie. Onem y 20mogo ceum
mum yubenuyuma xopucme ce Xyxkos unu Kensun-Bojmos moden mj. nuneapna onpyea
UIU UHeApHA ONpY2a NAPANenHo 6e3aHd 34 JUHeapHy npucywnuyy. Y osom pady ce
yenosu abcopbosarea Oejcmea NpunyoHe cuiie Koju peoyKyjy amMnaumyoy YCmameHoz
Kpemara npumapre mace gopmyruwy 3a cayuaj Kensun-3eneposoe mooena
BUCKOETACMUYHOZ WMana u re206e @parkyuone ceneparuzayuje. Jobujenu ycnosu
unmepnpemupajy ce y 0yXy 0ZpaHuuera Ha Koeguyujenme y Mooeny Koju ciede u3
Knaysuyc-/Juemoge wuejednaxocmu. Ilpednosicenu mooden ce Mmodce ynompedbumu y
amanusu oucunayuje eHepeuje MexXaHuuKux Cucmema Koju YKmYuyjy eiacmomepe,
nonumepe, OUOIOWIKA MKUBA, buomamepujaie u opyee peaiHe mamepujaie.

Kwyunepeuu: Iacusno ynpasmwarse subpayujama, gpaxyuonu Kensun-3enepoe mooen
suckoenacmuynoe mena, Knaysuyc-/fuemosa nejedonaxocm

| 3BOPHVK PAOOBA MEBYHAPOOHE KOH®EPEHLIMJE (2018) |



