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Summary: It is well recognized that when using exact theory, as opposed to the more
usual approximate finite element method, there exists a duality between buckling and
natural vibration of an elastic structure, even though the former is a static problem
whereas the latter is a dynamic one. The solution procedures for the both problems are
analogous because both can be essentially represented by a transcendental eigenvalue
problem, the eigenvalues being natural frequencies in vibration problems and load
factors in buckling problems. Thus the elastic buckling of a structure is often regarded
as the degenerated case of its natural vibration at zero frequency. In this paper duality is
proved for the both elastic and viscoelastic (or damage) structure using semi-analytical
finite strip method (FSM) and rheological-dynamical analogy (RDA). The governing
dynamic RDA modulus has been derived in [1]. This paper presents an investigation of
composite thin-walled wide-flange columns. Numerical examples showing the
theoretical considerations are presented and agree with the experimental data. Two
reference Open Source Software implementations are provided: for approximating the
natural frequency from stress via physical duality (and vice versa) and for the visual
analysis of the physical duality approximation effectiveness.

Keywords: Duality, FSM, RDA, dynamic RDA modulus, Composite thin-walled wide-
flange column, numerical analysis, accuracy of numerical evaluation

1. INTRODUCTION

The conventional FSM is based on the eigen-functions for the vibrating beam, and

proved to be efficient tool for analyzing a great deal of structures for which both
geometry and material properties can be considered as constants along a main direction,
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straight or curved, while only the loading distribution may vary. As far as linear analysis
is concerned, it takes advantage of the orthogonality properties of eigen-functions in the
stiffness matrices formulation.
The analysis of a variety of elastic structures subjected to static loads lead to the same
matrix equation of

Kg=Q 1)
in which K is the stiffness matrix of structure, q the vector containing all nodal
displacement parameters, and Q the vector containing all nodal forces.
If the structure is moving then it is also possible to reduce the dynamic problem to a
static one by applying D'Alembert's principle of dynamic equilibrium in which an
inertial force equal to the product of the masss and the acceleration is assumed to act on
the structure in the direction of negative acceleration. Thus at any instant ot time the
equibrium equation for a structure in which both damping and external excitation forces
are assumed to be non-existent is

Ka(t)=—(M+m)d(t) @

where q(t) is now a function of time and .. reprents 52/3t2 . In the above equation M is
a diagonal matrix of concentrated or line masses at the nodal lines, and is simply equal to
zero when no such concentrated or line masses are acting on the structure, and m is an
overall mass matrix of the structure assembled from individual strip consistent mass
matrices m°. The assembly process for mass matrices and for stiffness matrices are
identical [2].

For free vibration, the system is vibrating in a normal mode, and it is possible to make
the substitutions

q(t)=gsinat 4(t)=-w’gsinet ®3)

into (2) to obtain
(K—wzm)qzo @)
where @ is the natural frequencies of the modes and the common term Sin@t has been

concelled out.
It is possible to transform (4) into

_ 1
(K 1m)q = gq 5)
which becomes, therefore, a transcendental eigenvalue problem with the form
AX=AX (6)

Comparatively little work has been done on the application of the finite strip to stability
problems, although vibration and stability share many similar features and both require
the determination of eigenvalues and eigenvectors.

Two types of column failure (buckling) are well known for wide-flange sections: local
buckling and overal (Euler) column buckling. In local modes, only non-linear terms such
as square derivatives of transverse displacement w need to be included (von Karman
approach).

It is obvious that if the total potential energy of the strip, i.e. the sum of strain energy due
to bending, potential energy due to nodal line forces, and the additional potential energy
due to the initial stress, is now minimized with respect to the nodal displacement
parameters, the following relationship would be obtained:
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Sq+Sgq=Q (7
in which Sg is referred to as the geometric stiffness matrix of strip or initial stress matrix
and takes up the same sign as the stresses.
Upon assembly of the contributions from all the strips an overall set of
equilibrium equations is established,

Kg+Kgq=Q (8)
For linear stability, the nodal forces are zero and it is therefore possible to arrive at
eigenvalue equations similar to the ones given in (4),

(K+2Kg)a=0 ©)
with 4 being scaling factor related to the critical load
=O¢r = /;Tm; (10)

where t is the web (flange) thickness.

2. DUALITY OF BUCKLING AND VIBRATION

The propagation of mechanical waves (or stress waves) with transition from the short-
time modulus of elasticity (Ep) to the long-time one (En) represents a physical basis for
the analogy between two different physical phenomena, the rheological and the
dynamical. Generally speaking, the RDA is derived in order to solve dynamic problems,
but it can be used in the analysis of quasi-static loading considering the corresponding
limit values of the derived analytical expressions. The governing dynamic RDA modulus
has been derived in [1].

1+p+5°2 E
(1+9) +6 lims 0 1+o o

? is the structural-material creep coefficient and @ is the frequency of excitation.
Elastic buckling analysis by the FSM was pioneered by Yoshida [3] and Przemieniecki
[4]. Plank and Wittrick [5] generalized the approach to include shear loading, by using
complex harmonic functions. They pointed out that duality exists between the free-
vibration behavior and buckling under unifrom end compression.

2
o, = %(Mj (12)
p \ a

where i = number of degrees of freedom (DOF), # = mass density, m = number of
series term and a = length of the column. In this paper duality is proved for the both
elastic and viscoelastic structure using the FSM and RDA.

3. SOFTWARE IMPLEMENTATION

The fsm_eigenvalue project [6] provides a reference Open Source Software
implementation for parametric modeling of buckling and free vibration in prismatic
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structures, performed by solving the eigenvalue problem in the harmonic coupled finite
strip method (HCFSM).
The fsm_eigenvalue project takes the semi-analytical finite strip model data file
(geometry, materials, loading) as its input and then performs its computations as a
parameter sweep over 4 separate dimensions:

e D1: Performs the buckling and free vibration analysis

e D2: Iterates over all strip lengths, in the range specified by the input

o Da3: Iterates over all strip thicknesses, in the range specified by the input

e D4: Iterates over all modes, in the range specified by the input.
The HDF5 (Hierarchical Data Format 5) [7] format has been selected for storing the
computed results, because of its innate ability to efficiently store and organize large
amounts of numerical data. HDF5 is an extensible and open standard, comprised of
platform independent technologies which are available under Open Source licenses.
HDF5 format has been designed with the objective of creating data storages that are self-
descriptive, flexible, and have extremely fast and efficient access patterns to the stored
data.

For each combination of mode, strip length and thickness the fsm_eigenvalue project
outputs a large amount of numerical data: critical stress, natural frequency, their
approximations via physical duality, approximation errors, minimal critical stress vector,
minimal natural frequencies vector, etc. To approximate the natural frequency from
stress via physical duality (and vice versa) a separate Open Source programming library
has been created, named physical_dualism [8].

When larger finite strip models are analyzed, such as the example data files provided by
the fsm_eigenvalue project — that have 51 modes, 7800 strip lengths (100-4000 mm with
a 0.5 mm iteration step) and 140 strip thicknesses (2-9 mm with a 0.05 mm iteration
step), computed results can amount to over 50 GB of compressed data per HDF5 file.

Such data can’t be inspected manually, so it was necessary to build a new Open Source
project for automated visualization and modal analysis of the parametric model of
buckling and free vibration in prismatic shell structures, named fsm_modal_analysis [9].
This software has been used to generated Figs. 1, 2, 3 and 4 within this paper.

4. APPLICATIONS

The simply supported ideally straight thin-walled wide-flange H-section column of
length a = 2310 mm consists of a web and two flanges of side b = 152 mm [10]. The
thickness t is 6.35 mm. The column is compressed axially. The bending stiffness
E1=89.6 kNm? about the weak axis of the analysed column was computed from the
information provided by the manufacturer for each section following the methodology
developed by Barbero and Tomblin [11]. This information includes the type of fibres and
matrix material, the local orientation of the fibres and the fibre content in the cross-
section. Tab. 2 shows the flange and web bending stiffness components for 152 mm x
152 mm x 6.35 mm pultruded WF H-section column.
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Table 1. Weak axis bending stiffness components of flanges and web: test data [10]

b=152mm Stiffness component (kNm) Flanges Web

TR Dy 30295 | 046217

- Pl ]| D2, 116.28 0.21052

. D12 44.35 0.08267

= Des 38.52 0.06736
Z -

The buckling behaviour of ideally straight column to axial loading and small transverse
concentrated load has already been investigated by the HCFSM [12]. Milasinovi¢ [2]
developed a harmonic coupled FSM by including the Green-Lagrange strain terms in the
formulations, thus bending and membrane are coupled in the geometric stiffness to give
more accurate buckling behaviour prediction, especially in large-deflection and elastic
post-buckling analysis. The following approximate functions are used for the simply flat
shell strip.

Uy = AV = Y YENSGY, =YY [1-xb xblgl,
m=1 m=1

Vo =AY} = YV Nay, =

m=1 m=1

a
—Y,. [1-x/b x/bQ!,,
2y [1-x/b x/b,

W:Awqw :zYmewqwm :ZYwm[Nl N2 NS N4:hwm’
m=1 m=1

Ny () =1-3(¢/b)" +2(x/b)", N, (x)=b[ x/b-2(xb)" +(x/b)’ |,

(13)

N, (x) =3(x/b)’ ~2(x/b)’, N, (x)=b| ~(x/b)’ +(x/b)" |,
Yam (¥) =sin(mzy/a) =Y, (¥),
Yo (y)=dYs, /dy =(mz/a)cos(mzy/a), m=123,...

The material properties in Table 3 for the implementation of HCFSM are obtained as
detailed in [12], and there are used in this paper.
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Table 2. Material properties of flange and web

Material Elastic Viscoelastic
Properties Flanges Web Flanges Web
Ex (N/mm?) 62786.25 52906.25 20928.75 17635.42
Ey 24098.98 24098.98 8032.99 8032.99
Ly 0.38 0.39 0.38 0.39
Hy 0.15 0.18 0.15 0.18
G 1805287.39 3156.91 1805287.39 3156.91
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Figure 1. Elastic natural frequencies
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Figure 2. Elastic critical buckling stresses
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Figure 4. Viscoelastic critical buckling stresses
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Fig. 1 shows the results of natural frequencies for the elastic solutions of the problem.
The column length has been successively increased from 2000 to 4000 mm, with a step
of 0.5 mm. There is a noticeable lag between the viscoelastic, Fig. 3 and the elastic
natural frequencies.

Fig. 2 presents the elastic buckling curve for all lengths of columns from 2002 to 4000
mm, with a step of 0.5 mm. Viscoelastic buckling stress, Fig. 4 lags behind the elastic
buckling stress across all modes, which is a consequence of the visoelastic behaviour of
materials. The viscoelastic behaviour is characterized by the delay time TP [1]. As the
length of the column is large, the observed lag increases. At the column length of 2310
mm, the computed elastic critical stress of the first global mode correspond to test results
[10]. Also, the computed viscoelastic stress at 2310 mm of the first global mode has
been previously confirmed in [12].

5. CONCLUSIONS

Numerical examples were computed by application of extensive hybrid parallelization.
Results from the numerical studies for all lengths of columns from 2000 to 4000 mm,
show that columns have all elastic and inelastic characteristics in the same (first) mode.
Because of that the mode interaction is not occurred. Numerical examples showing the
theoretical considerations are presented and agree with the experimental data at the
column length of 2310 mm. Two reference Open Source Software implementations are
provided: for approximating the natural frequency from stress via physical duality (and
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vice versa). In this paper duality is proved for the both elastic and first time for
viscoelastic columns using the RDA.

REFERENCES

[1] Milasinovi¢ DD. Rheological-Dynamical Theory of Visco-Elasto-Plasticity and
Fatigue: Part 2. Multidiscipline Modelling in Materials and Structures, 2(2), 2006,
pp.127-66.

[2] Milasinovi¢ DD. The Finite Strip Method in Computational Mechanics. Faculties of
Civil Engineering: University of Novi Sad, Technical University of Budapest and
University of Belgrade: Subotica, Budapest, Belgrade, 1997.

[3] Yoshida K. Buckling analysis of plate structures by strip elements, Proc. Japan Soc.
Nav. Archit., 130, 1971, pp.161-71.

[4] Przemieniecki JS. Matrix analysis of local instability in plates, stiffened panels and
columns. Int. J. Numer. Meth. Eng., 5, 1972, pp.209-16.

[5] Plank RJ. and Wittrick WH. Buckling under combined loading of thin flat-walled
structures by a complex finite strip method. Int. J. Numer. Meth. Eng., 8, 1974,
pp.323-39.

[6] P.Mari¢, D.D. Milasinovi¢, “fsm_eigenvalue public code repository”, 2017, URL
https://bitbucket.org/petar/fsm_eigenvalue

[7] The HDF Group, “HDF5”, 2015, URL https://www.hdfgroup.org/HDF5/

[8] P.Mari¢, D.D. Milasinovi¢, “physical_dualism public code repository”, 2017, URL
https://bitbucket.org/petar/physical_dualism

[9] P. Mari¢, “fsm_modal analysis public code repository”, 2018, URL
https://bitbucket.org/petar/fsm_modal_analysis

[10] Barbero EJ, Dede EK and Jones D. Experimental verification of buckling-mode
interaction in intermediate-length composite columns. International Journal of
Solids and Structures, 37(29), 2000, pp.3919-34.

[11] Barbero E and J. Tomblin. A Phenomenological Design Equation for FRP Columns
with Interaction between Local and Global Buckling. Thin-Walled Structures, 18,
1994, pp.117-131.

[12] MilaSinovi¢ DD. Harmonic coupled finite strip method applied on buckling-mode
interaction analysis of composite thin-walled wide-flange columns. Thin-Walled
Structures, 50(1), 2012, pp.95-105.

AYAJIMTET IOJABA U3BUJAIBA U BUBPAILINJA
KOPUHITEILEM METOJA KOHAYHUX TPAKA

Pezume: Jlobpo je nosnamo, kaoa ce KOPUCMU AHATUMUYKA Meopuja 3a pas3iuxy 00
yewhe KopuwimeHnoe anpoKCUMAMUBHOZ MemoOd KOHAYHUX eleMeHamad, 0d NOCMmoju
Ooyanumem usmely ussujaroa u cONCMEeHUx subpayuja elacmuine KOHCmMpyKyuje, Uaxo
Jje npeu cmamuyxku npobrem, 0ok je opyeu ounamuuxu. Ilpoyedype pewasarsa 3a 06a
npobnema cy awnanocHe jep ce o0ba Mo2y npeOCmMAasumu  MpAHCYEeHOEHMATHUM
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npooOAIEMOM CONCMBEHUX BPEOHOCMU, CONCMEEHe 8PEOHOCMU CY NPUPOOHe (DPeKseHyuje
y npobremuma eubpayuja, a gaxmopu onmepeherba y npobremuma ussujarea. 3602
06024 ce elacmuyHO U36Ujarbe KOHCMPYKYUje 4ecmo NOCMAmpd Kao 0e2eHepuUcauu
cyuaj c6oe npupoOHo2 BUOPAYUOHO2 CIARA CA HYMOM CONCMEEHOM (ppexeenyujom. YV
080M pady oyanumem je OOKA3aH 3d obe, erdcmuyHy u euckoeracmuyny (owmelieny)
KOHCIMPYKYUJY KOpuumerbeM HYJIVAHATUMU4Ko2 memooa konaunux mpaka (MKT) u
peonowko ounamuyke anarocuje (PAA). Braoajyhu ounamuuxu mooyn je usgeden y [1].
Osaj pad npedcmasma UCMpadcugarbe KOMROZUMHUX MAHKOZUOHUX cmybosa ca
wupokum @ranwama. Hymepuuxu npumepu npuxazyjy meopujcka pasmampared, a y
caznacHocmu ¢y ca excnepumenmaninum nooayuma. /lea pegpepenmuna 'Open Source
Software’ cy obesbehena 3a npopauyn concmeeHux QpexseHyuja npexo KpumudHux
Hanowa npema Qusuukom dyarumemy (U OOPHYMO) KAO U 3a GUZVEIHY AHATU3Y
euracrnocmu anpoxcumayuje QuzUUKuUM Oyaiumemo.

Kwyune peuu: [Jyanumem, MKT, P/A, ounamuuu PIJA mooyn, Komnosumnu
MAHKO3UOHU cMY6 ca WUPOKUM (PIAHMAMA, HYMEPUUKA AHAIU3A, MAYHOCM HYyMepuuKe
esanyayuje
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