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Summary: In this paper the dynamic interaction of two rigid massless foundations
resting on the finite depth soil medium layer. The vertical response of a loaded and
unloaded foundation of a layer over a bedrock is calculated by Integral transform
method (ITM). This method is based on analytical solution of the Lamé's differential
equations of motion. A parametric analysis of vertical vibrations as a function of soil
depth is carried out using a computer program developed in MATLAB. The obtained
results are presented.
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1. INTRODUCTION

Soil-Structure Interaction (SSI) is important part of dynamic analysis of structures,
especially in a case of structures of special importance and structures founded on a soft
soil. Dynamic parameters of foundations resting on a soil are essential for SSI analysis.
These parameters are usually given in form of stiffness (impedance) and flexibility
(compliance) factors that depend of frequency. Dynamic properties of a single rigid
foundation resting on a homogeneous, elastic halfspace had been a major topic over
decades and it refers to the majority of published SSI analyses [1]. However, the
assumption of homogeneous soil medium could not be satisfied in most cases. Also, the
influence of surrounding foundations could not be completely neglected in general.
Kausel, Wass and Roesset [2] presented a finite element method (FEM) based approach
for determining dynamic properties of the foundation on layered media. Wong and Luco
[3], Karabalis and Mohammadi [4] solved the dynamic foundation-soil-foundation
interaction (FSFI) using boundary element method (BEM) approach. This paper presents
the solution of dynamic FSFI for two adjacent foundations in layered soil medium using
Integral Transform Method (ITM) [5]. Parametric study on the effects of layer depth is
presented. Only vertical vibrations of the system are taken into account.
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2. FORMULATIONOF ITM
2.1.  Wave equation in a half space and boundary conditions

ITM is based on Lamé‘s differential equations of motion — partial differential equations
with constant coefficients given in terms of spatial coordinates (x,y,z) and time t

VU (A+ 1)VVuU = pli ()]

where is mass density of the material, u is displacement vector and x and 4 are Lamé’s
material constants given in terms of elasticity modulus E, Poisson’s coefficient v and
damping ratio &
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With the help of the Helmholtz’s principle, Lamé’s equations can be written in form of
two decoupled wave equations
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where ¢, and ¢ are velocities of the dilatational and shear waves
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and ¢ and v are scalar and vector fields that have to satisfy the relation

Vu=Vep+Vxy o)

If we assume that yz = 0 than Eq (5) could be expand as

ux = Qx _‘Vy‘z
uy = (D,y _‘le,z
uz = (D,z _\Vx,y +‘Vy,x (6)

In order to find the solution of the system of equations (3) they are transferred from
(x,y,z,t) to (kx,ky,z, ) domain by using a threefold Fourier transform
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In (kx,ky,z,) domain they represent a system of three ordinary differential equations
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The solution of the system of equations (8) is given as
p=Ae™ +Ae ™,
p=A 4 A (1)

where A1, Az, Bix, Bay, Bax, B2y are unknown coefficients of integration.

The displacement field in the transferred domain can be obtained by substituting Eq (10)

into Eq (6) previously transferred into (kx,ky,z, @) domain by using Eq (7). Therefore
a=A,C 10

where 0 is a displacement field in the transferred domain, Eq (12), C is a vector of
unknown coefficients of integration, Eq (13), and A is a correlation matrix, Eq (14).

ar={d, a, a} (12)
Cr={Ae”™ Ae™ B,e™ B,e™ Be”* B,e”| ©
ik, ik, 0 0 -1 4

A, =ik, ik, 4 -4 0 0 (14)
A=A ik, ik, ik, ik,

Using well known relations between stress and displacement fields, one can obtain
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6=A C (15

e

A

where ¢ is a stress field in the transferred domain, Eq (16), C is a vector of unknown
coefficients of integration, Eq (13), and A? is a correlation matrix, Eq (17).

6={6, 6, 6, %, &, %, (16)
B 2 M2 2 M2 . . ]
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The unknown coefficients are obtained by taking into account boundary conditions (BC).
There are three types of BC: (1) natural, on the top surface, (2) mixed, at the contact
surface between adjacent layers and (3) essential, at the bottom of the soil medium in the
case of a bedrock, or Sommerfeld’s radiation BC in the case of an infinite halfspace [6].
Natural boundary conditions at the top surface of the soil medium, z=0, can be written
by taking into account applied surface load p(x, Y, ®)

Gk, 0.0)] (B, (K, )
6, (K K,,0,0) b =1 P, (k,.k,, @) b = p(k,,k,, @) 18)
( ’ ylow) pz(kx’ y'w)

where p(k,,k,, @) is a Fourier transform of the applied surface load. These BC give a

complete system of equations in the case of halfspace, since coefficients Az, Box and By
vanish due to the Sommerfeld’s radiation condition. In the case of a soil layer of finite
depth h resting on a rigid bedrock, in addition to BC at the surface, Eq (18), BC at the
bottom of the soil layer, z=h, should be defined in order to obtain vector C:

0, (k,.k,.h, @)
a, (k, k,,h,@) t = {0} (19
G, (k, .k, h,o)

In the case of a multi-layered soil medium, additionally defined BC that preserve the
continuity of stress and displacement fields for every contact surface between layers
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must be taken into account. Once vector C is calculated considering all BC the problem
is solved.

Originally, ITM solution is obtained in (kxky,z «) domain, but it could be transferred into
(x,y,z,t) domain by using a threefold inverse Fourier transform

f(x, y,z,t)=@ [ ] ] fkok, 2,0 dxdydt  (0)

—00 —00 —00

The schematic presentation of ITM procedure is given in Figure 1.

| Fourier transformation ¢
Lame's Ordinary
differential equations differential equations
' Usual FEM or BEM Analytical
y procedure y solution
Response Transformed
response

A Inverse Fourier transformation |
Figure 1. ITM scheme

3. DYNAMIC RESPONSE OF SURFACE FOUNDATIONS

In this paper, term foundation refers to a part of the soil surface that represents the
contact area between soil and foundation.

Dynamic response of the surface of the halfspace subjected to the unit harmonic force is
obtained with the help of ITM. The analysis considers three load cases, as shown in
Figure 2. The results are three displacement fields (uy,uy,u;) used for derivation of the
flexibility matrix of a flexible foundation, Fr.

Figure 2. Load cases
3.1. Rigid foundation
The flexibility matrix of a rigid foundation, FR, is obtained by using the kinematic

consideration derived from the principle that equates the deformation energies of both
rigid and flexible foundation systems.
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FR=ttFFt @)

In Eq (21) term t refers to the kinematic matrix that represents the relationship between
DOF of rigid and DOF of flexible foundation. Rigid foundation has six DOF located at
the centroid — three translations and three rotations. Hence, the kinematic matrix t is
defined as

tr={t,---t,---t,}

@
where t;is equal
100 0 0 -y
t=(0 1 0 0 0 x
001wy —-x O ®)

while x; and y; are coordinates of the node i.

The flexibility matrix of the rigid foundation is a square, 6x6, quasi diagonal matrix.
Nondiagonal elements exist because horizontal translations are coupled with rocking and
vice versa.

F. 0 0 0o F, O
0 F, 0 F., O 0
0 0 F, O 0 0
Fr = (2
0 F,, 0 F, 0 0
Fyx O 0 0 Fy O
| 0 0 0 0 0 F,]
Stiffness matrix of the rigid foundation Kg can be obtained directly from Fg since
Kp=F" )

Although the calculation of dynamic properties of a rigid foundation using ITM has
advantages, one should be aware of aliasing and collocation problems that might arise
during the numerical calculation [7].

3.2.  Group of foundations
Assessment of dynamic parameters of a group of n foundations follows the previously

mentioned process with minor differences. The number of DOF of n foundations is n
times higher than the number of DOF of a single foundation. Therefore, the order of
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flexibility matrix Fr is (6n)x(6n). Also, the kinematic equation, Eq (3), must be rewritten
as

Fo =T'F.T )

where T is a diagonal block matrix consisting of the kinematic matrices t; for each
foundation in a group of n foundations [7].

4. NUMERICAL RESULTS

The dynamic compliance of the system of two adjacent foundations is calculated using
presented approach. The two considered foundations are shown in Figure 3. They are
rigid, square and placed on the surface of homogeneous soil limited by a substratum. The
distance between centroids of foundations is X. The soil layer of height H is viscoelastic,
linear and characterized by its mass density p, shear modulus G, damping coefficient ¢
and Poisson's ratio v. The goal is to obtain the vertical compliance functions of the two
footings and to calculate the influence of the adjacent foundation as well as the influence
of the layer depth on the vertical response. The numerical calculation is performed by
own program developed using software package Mathworks MATLAB [8].

Figure 3. Model disposition

In order to analyse the influence of the layer depth the compliances are calculated for
relative depth H/B = 2, 4, 8 and 105, at the relative distance X/B = 4 between two
footings, versus dimensionless frequencies ao. The results of the analysis are shown in
Figure 4. The symbols Fij* indicate the vertical compliance of the foundation i in a group
of k foundations when the foundation j is loaded with a vertical force. The dimensionless
frequency ao is defined as

8 =—" @7

where o is the angular frequency, B is the half-width of the foundation and c; is share
waves velocity.
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Figure 4. Vertical compliance of adjacent foundations for varying depths of the layer

For the foundation loaded with the vertical unit force the static stiffness increases
(a0 = 0) but the magnitude of the resonant peak decreases when the soil layer depth
increases. Also, a remarkable shift in the resonant frequency occurs. That behaviour is
expected as shallow layers are stiffer than deep ones. In case of a very deep layer
(H = 105 m) the solution is similar to the solution of a foundation resting on an infinite
halfspace. The amplitudes of the compliances of the adjacent foundation F2:? are
significantly lower than the amplitudes of the foundation loaded with unit force Fi;2.
However, when the soil layer depth increases, the amplitudes Fz? increases. This
behaviour could be explained by observing waves reflection of the bedrock. Regarding
F11%, P-waves are directly reflected of the bedrock, having zero deflection angles and
significantly amplifying the response of the system. In the case of shallow layer, the
shorter deflection path results in a smaller dumping effect and higher amplification.
Regarding F»?, S-waves are predominant waves as the reflection angle of P-waves is
higher. Therefore, the increase of layer depth results in decrease of the stiffness of the
system giving the higher amplitudes. The analysis also showed that the influence of the
unloaded foundation on the dynamic response of the foundation loaded with the unit
force is negligible. However, the vice versa effect is significant and it should not be
neglected in general.

5. CONCLUSIONS
In this paper, the dynamic behaviour of a two square foundations resting on a layered

viscoelastic soil medium and subjected to vertical harmonic force of unit amplitude is
presented. The analysis is carried out in frequency domain using Integral Transform
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Method. It shows that ITM is an efficient method for obtaining the dynamic parameters
of foundations. The advantages lay in the fact that the displacements in the soil can be
obtained straightforward by solving the system of linear equation in a frequency —wave
number domain. However, some difficulties can arise in the numerical perform of the
Fourier transformation. The parametric study shows the influence of layer depth on the
vertical response of the system, reflected in frequency shifting and variation of peak
amplitudes. The conclusion, based on the obtained results, is that a detailed soil structure
interaction should be taken in the account for the analysis of any structure sensitive to
the supports displacements.
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BEPTUKAJIHA OATI'OBOP I'PYIIE TEMEJbA HA
CJIOJEBUTOM T.J1Y IPUMEHOM ITM

Pezume: YV 06om pady ananusupana je OuHaMuYKa ummepaxyuja 08a Kpyma memesnd,
be3 mace, hyHoupana Ha nOBpWUHY COja MAA KOHauHe OyouHe. JJunamuuxu 002080p y
éepmuKkaiHom npasyy je oopehen npumenom Memode unmezpaine mpancgopmayuje
(Integral Transform Method, ITM) xoja ce 3achuéa na anaiumudkom pewery Jlaméosux
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oughepenyujanuux jeomauuna Kpemareda. Ilapamemapcka ananusza 6epmMUKAIHUX
subpayuja cucmema y @yukyuju debsmune croja je cnpogedena NpUMeHOM npocpama
Hanucanoe y Mamnao-y. Pesynmamu me ananuze cy NpuKazauu 'y paoy.

Kawyune peuu: ounamuuxa ummepaxyuja mia u objekma, epyna Kpymux memesd,
cnojesumo miuo, Memooa unmezpanne mpancghopmayuje
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