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Summary: In this paper the dynamic interaction of two rigid massless foundations 

resting on the finite depth soil medium layer. The vertical response of a loaded and 

unloaded foundation of a layer over a bedrock is calculated by Integral transform 

method (ITM). This method is based on analytical solution of the Lamé‘s differential 

equations of motion. A parametric analysis of vertical vibrations as a function of soil 

depth is carried out using a computer program developed in MATLAB. The obtained 

results are presented. 

 

Keywords: dynamic soil-structure interaction, group of rigid foundation, layered soil, 

integral transform method 

 

 

1. INTRODUCTION 
 

Soil-Structure Interaction (SSI) is important part of dynamic analysis of structures, 

especially in a case of structures of special importance and structures founded on a soft 

soil. Dynamic parameters of foundations resting on a soil are essential for SSI analysis. 

These parameters are usually given in form of stiffness (impedance) and flexibility 

(compliance) factors that depend of frequency. Dynamic properties of a single rigid 

foundation resting on a homogeneous, elastic halfspace had been a major topic over 

decades and it refers to the majority of published SSI analyses [1]. However, the 

assumption of homogeneous soil medium could not be satisfied in most cases. Also, the 

influence of surrounding foundations could not be completely neglected in general. 

Kausel, Wass and Roesset [2] presented a finite element method (FEM) based approach 

for determining dynamic properties of the foundation on layered media. Wong and Luco 

[3], Karabalis and Mohammadi [4] solved the dynamic foundation-soil-foundation 

interaction (FSFI) using boundary element method (BEM) approach. This paper presents 

the solution of dynamic FSFI for two adjacent foundations in layered soil medium using 

Integral Transform Method (ITM) [5]. Parametric study on the effects of layer depth is 

presented. Only vertical vibrations of the system are taken into account. 
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2. FORMULATION OF ITM 

2.1. Wave equation in a half space and boundary conditions 

ITM is based on Lamé‘s differential equations of motion – partial differential equations 

with constant coefficients given in terms of spatial coordinates (x,y,z) and time t 
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where is mass density of the material, u is displacement vector and μ and λ are Lamé’s 

material constants given in terms of elasticity modulus E, Poisson’s coefficient υ and 

damping ratio ξ 
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With the help of the Helmholtz’s principle, Lamé’s equations can be written in form of 

two decoupled wave equations 
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where cp and cs are velocities of the dilatational and shear waves 
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and φ and ψ are scalar and vector fields that have to satisfy the relation  
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If we assume that ψz = 0 than Eq (5) could be expand as 
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In order to find the solution of the system of equations (3) they are transferred from 

(x,y,z,t) to (kx,ky,z,ω) domain by using a threefold Fourier transform 
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In (kx,ky,z,ω) domain they represent a system of three ordinary differential equations 
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where 
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The solution of the system of equations (8) is given as 
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where A1, A2, B1x, B1y, B2x, B2y are unknown coefficients of integration. 

The displacement field in the transferred domain can be obtained by substituting Eq (10) 

into Eq (6) previously transferred into (kx,ky,z,ω) domain by using Eq (7). Therefore 
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where û  is a displacement field in the transferred domain, Eq (12), C is a vector of 

unknown coefficients of integration, Eq (13), and Au is a correlation matrix, Eq (14). 
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Using well known relations between stress and displacement fields, one can obtain 
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where σ̂  is a stress field in the transferred domain, Eq (16), C is a vector of unknown 

coefficients of integration, Eq (13), and 
A  is a correlation matrix, Eq (17). 
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The unknown coefficients are obtained by taking into account boundary conditions (BC). 

There are three types of BC: (1) natural, on the top surface, (2) mixed, at the contact 

surface between adjacent layers and (3) essential, at the bottom of the soil medium in the 

case of a bedrock, or Sommerfeld’s radiation BC in the case of an infinite halfspace [6].  

Natural boundary conditions at the top surface of the soil medium, z=0, can be written 

by taking into account applied surface load ( , , )x y p   
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where ˆ ( , , )x yk k p  is a Fourier transform of the applied surface load. These BC give a 

complete system of equations in the case of halfspace, since coefficients A2, B2x and B2y 

vanish due to the Sommerfeld’s radiation condition. In the case of a soil layer of finite 

depth h resting on a rigid bedrock, in addition to BC at the surface, Eq (18), BC at the 

bottom of the soil layer, z=h, should be defined in order to obtain vector C: 
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In the case of a multi-layered soil medium, additionally defined BC that preserve the 

continuity of stress and displacement fields for every contact surface between layers 
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must be taken into account. Once vector C is calculated considering all BC the problem 

is solved. 

Originally, ITM solution is obtained in (kx,ky,z,ω) domain, but it could be transferred into 

(x,y,z,t) domain by using a threefold inverse Fourier transform 
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The schematic presentation of ITM procedure is given in Figure 1. 

 

 

 
Figure 1. ITM scheme 

 

 

3. DYNAMIC RESPONSE OF SURFACE FOUNDATIONS 
 

In this paper, term foundation refers to a part of the soil surface that represents the 

contact area between soil and foundation. 

Dynamic response of the surface of the halfspace subjected to the unit harmonic force is 

obtained with the help of ITM. The analysis considers three load cases, as shown in 

Figure 2. The results are three displacement fields (ux,uy,uz) used for derivation of the 

flexibility matrix of a flexible foundation, FF. 

 

 

Figure 2. Load cases 

 

3.1. Rigid foundation 

 

The flexibility matrix of a rigid foundation, FR, is obtained by using the kinematic 

consideration derived from the principle that equates the deformation energies of both 

rigid and flexible foundation systems.  
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 FR = tt FF t (21) 

 

In Eq (21) term t refers to the kinematic matrix that represents the relationship between 

DOF of rigid and DOF of flexible foundation. Rigid foundation has six DOF located at 

the centroid – three translations and three rotations. Hence, the kinematic matrix t is 

defined as 
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while xi and yi are coordinates of the node i. 

The flexibility matrix of the rigid foundation is a square, 6x6, quasi diagonal matrix. 

Nondiagonal elements exist because horizontal translations are coupled with rocking and 

vice versa. 
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Stiffness matrix of the rigid foundation KR can be obtained directly from FR since 
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Although the calculation of dynamic properties of a rigid foundation using ITM has 

advantages, one should be aware of aliasing and collocation problems that might arise 

during the numerical calculation [7]. 

 

3.2. Group of foundations 

 

Assessment of dynamic parameters of a group of n foundations follows the previously 

mentioned process with minor differences. The number of DOF of n foundations is n 

times higher than the number of DOF of a single foundation. Therefore, the order of 
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flexibility matrix FR is (6n)x(6n). Also, the kinematic equation, Eq (3), must be rewritten 

as  

 


R F
F T F T

  (26) 

 

where T is a diagonal block matrix consisting of the kinematic matrices ti for each 

foundation in a group of n foundations [7]. 

 

 

4. NUMERICAL RESULTS 
 

The dynamic compliance of the system of two adjacent foundations is calculated using 

presented approach. The two considered foundations are shown in Figure 3. They are 

rigid, square and placed on the surface of homogeneous soil limited by a substratum. The 

distance between centroids of foundations is X. The soil layer of height H is viscoelastic, 

linear and characterized by its mass density ρ, shear modulus G, damping coefficient ξ 

and Poisson's ratio ν. The goal is to obtain the vertical compliance functions of the two 

footings and to calculate the influence of the adjacent foundation as well as the influence 

of the layer depth on the vertical response. The numerical calculation is performed by 

own program developed using software package Mathworks MATLAB [8]. 

 

 

 
 

Figure 3. Model disposition 

 

In order to analyse the influence of the layer depth the compliances are calculated for 

relative depth H/B = 2, 4, 8 and 105, at the relative distance X/B = 4 between two 

footings, versus dimensionless frequencies a0. The results of the analysis are shown in 

Figure 4. The symbols Fij
k indicate the vertical compliance of the foundation i in a group 

of k foundations when the foundation j is loaded with a vertical force. The dimensionless 

frequency a0 is defined as 
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where ω is the angular frequency, B is the half-width of the foundation and cs is share 

waves velocity. 
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Figure 4. Vertical compliance of adjacent foundations for varying depths of the layer 

 

For the foundation loaded with the vertical unit force the static stiffness increases  

(a0 = 0) but the magnitude of the resonant peak decreases when the soil layer depth 

increases. Also, a remarkable shift in the resonant frequency occurs. That behaviour is 

expected as shallow layers are stiffer than deep ones. In case of a very deep layer  

(H = 105 m) the solution is similar to the solution of a foundation resting on an infinite 

halfspace. The amplitudes of the compliances of the adjacent foundation F21
2 are 

significantly lower than the amplitudes of the foundation loaded with unit force F11
2. 

However, when the soil layer depth increases, the amplitudes F21
2 increases. This 

behaviour could be explained by observing waves reflection of the bedrock. Regarding 

F11
2, P-waves are directly reflected of the bedrock, having zero deflection angles and 

significantly amplifying the response of the system. In the case of shallow layer, the 

shorter deflection path results in a smaller dumping effect and higher amplification. 

Regarding F21
2, S-waves are predominant waves as the reflection angle of P-waves is 

higher. Therefore, the increase of layer depth results in decrease of the stiffness of the 

system giving the higher amplitudes. The analysis also showed that the influence of the 

unloaded foundation on the dynamic response of the foundation loaded with the unit 

force is negligible. However, the vice versa effect is significant and it should not be 

neglected in general. 

 

 

5. CONCLUSIONS 

 

In this paper, the dynamic behaviour of a two square foundations resting on a layered 

viscoelastic soil medium and subjected to vertical harmonic force of unit amplitude is 

presented. The analysis is carried out in frequency domain using Integral Transform 
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Method. It shows that ITM is an efficient method for obtaining the dynamic parameters 

of foundations. The advantages lay in the fact that the displacements in the soil can be 

obtained straightforward by solving the system of linear equation in a frequency –wave 

number domain. However, some difficulties can arise in the numerical perform of the 

Fourier transformation. The parametric study shows the influence of layer depth on the 

vertical response of the system, reflected in frequency shifting and variation of peak 

amplitudes. The conclusion, based on the obtained results, is that a detailed soil structure 

interaction should be taken in the account for the analysis of any structure sensitive to 

the supports displacements. 

 

 

ACKNOWLEDGMENTS 
 

We are grateful that this research is financially supported through the Project TR 36046 

by the Ministry of Education, Science and Technology, Republic of Serbia.  

 

 

REFERENCES 
 

 [1] J. Sieffert and F. Cevaer, Handbook of Impedance Functions (French Edition). 

Editions Ouest-France, 1995. 

[2] E. Kausel, G. Waas, and J. M. Roesset, “Dynamic Analysis of Footings on Layered 

Media,” J. Eng. Mech. Div., 1975, vol. 101, no. 5, p.p. 679–693. 

[3] H. L. Wong and J. E. Luco, “Dynamic interaction between rigid foundations in a 

layered half-space,” Soil Dyn. Earthq. Eng., 1986, vol. 5, no. 3, p.p. 149–158. 

[4] D. L. Karabalis and M. Mohammadi, “3-D dynamic foundation-soil-foundation 

interaction on layered soil,” Soil Dyn. Earthq. Eng., 1998, vol. 17, no. 3, p.p. 139–

152. 

[5] J. I.. Rastandi, “Modelization of Dynamic Soil-Structure Interaction Using Integral 

Transform-Finite Element Coupling,” PhD thesis, TU Munchen 2003. 

[6] M. Radišić, “Primjena Metoda integralne transformacije (ITM) za određivanje 

pomijeranja i napona u tlu usled harmonijskog opterećenja,” seminarski rad, 2010. 

[7] M. Radišić, G. Müller, and M. Petronijević, “Impedance matrix for four adjacent 

rigid surface foundations,” in EURODYN, 2014, p.p. 653–660. 

[8] MATLAB 2013a. MathWorks Inc. The Language of Technical Computing, 2013. 

 

 

ВЕРТИКАЛНИ ОДГОВОР ГРУПЕ ТЕМЕЉА НА 

СЛОЈЕВИТОМ ТЛУ ПРИМЕНОМ ITM 

 
Резиме: У овом раду анализирана је динамичка интеракција два крута темеља, 

без масе, фундирана на површини слоја тла коначне дубине. Динамички одговор у 

вертикалном правцу је одређен применом Методе интегралне трансформације 

(Integral Transform Method, ITM) која се заснива на аналитичком решењу Ламéових 
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диференцијалних једначина кретања. Параметарска анализа вертикалних 

вибрација система у функцији дебљине слоја је спроведена применом програма 

написаног у Матлаб-у. Резултати те анализе су приказани у раду. 

 

Кључне речи: динамичка интеракција тла и објекта, група крутих темеља, 

слојевито тло, метода интегралне трансформације 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


