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Summary: Isogeometric analysis (IGA) is based on a concept that uses the same base 

functions for description of displacement field and undeformed model geometry. The 

most common base functions used in the IGA are NURBS functions. In this paper, the 

IGA is applied in the free vibration analysis of beam element. The stiffness and mass 

matrices have been developed for rotation-free Bernoulli-Euler and Timoshenko beam 

using the Galerkin method. Natural frequencies of beam element with specific boundary 

conditions have been computed using the isogeometric approach. The results were 

compared with the exact analytical solutions obtained by using the dynamic stiffness 

method (DSM) and the conventional finite element method (FEM). 
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1. INTRODUCTION 
 

Beam elements represent one of the basic components in civil engineering structures. 

These structures are often subjected to dynamic excitation and thus the free vibration 

analysis of beams is of great importance. The vibration analysis is usually conducted 

using Bernoulli-Euler beam, but for thick beams, especially for high modes of vibration 

this theory does not provide adequate results. In such cases, the Timoshenko beam has to 

be used where the transverse shear deformation and rotatory inertia effect has been 

included [1]. Different approaches can be used for free vibration analysis of engineering 

structures such as finite element method (FEM), dynamic stiffness method (DSM), 

isogeometric analysis (IGA), etc.  

The IGA was first introduced by Hughes [2]. Hughes and his associates presented 

capability and potential for usage of NURBS basic functions in structural analysis. 

Previously, NURBS functions, developed by Piegl [3], were used for representation, 

design, and data exchange of geometric information processed by computers. Cottrell et 

al. [4] used the IGA in vibration analysis of elastic rod, Bernoulli-Euler beam, membrane 
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and Poisson-Kirchhoff plate. Also, Lee and Park [5] analysed the free vibration of 

Timoshenko beam for various boundary conditions using the isogeometric approach. 

In this paper the isogeometric approach is applied in the free vibration analysis of 

Bernoulli-Euler and Timoshenko beams. The isogeometric elements have been 

implemented in the program coded in MATLAB [6] and used to compute free vibration 

characteristics of straight beam with specific boundary conditions. 

 

 

2. ISOGEOMETRIC ANALYSIS 
 

Isogeometric analysis is approach based on idea that the analysis model uses the same 

mathematical description as the geometry model. The approach states that the same 

functions used for geometry description in CAD (Computer Aided Design) are adopted 

in the analysis for the geometry and solution field. This approach is useful because it 

merges design and analysis into one model. 

In the IGA, the domain consists of couple patches and each patch can be considered as a 

macro-element. The patch is defined over a parametric domain, which is divided by a 

knot vector. The intervals defined by a knot vector represent the IGA element. Similar to 

the FEM, an IGA element is specified by a set of nodes and corresponding basic 

functions. The nodes are IGA control points. They carry degree of freedom for the 

analysis and the boundary conditions are applied to them. As mentioned before, the basic 

functions used in the IGA are the same functions used for geometry description of the 

model. In general, these functions are not bound to one IGA element but extended over a 

series of elements. This property of basic functions allows higher continuities of shape 

functions over the element boundaries. However, these elements can be treated exactly 

in the same way as the conventional finite elements. The stiffness and mass matrices are 

evaluated on the element level and assembled to the global stiffness and mass matrices. 

More about the knot vector and basic functions will be presented in following. 

 

2.1 Knot vector 

 

A knot vector θ represents a set of non-decreasing real values ξi, known as knots, in the 

parametric space: 

 

1 2 3 1, , , , , ,i n p       
     (1) 

 

where n is a number of basic functions and p is an order of the basic function. A knot 

vector is said to be uniform if its components are uniformly spaced. Moreover, a knot 

vector is said to be open or clamped if its first and last knots have the multiplicity equals 

to p+1. Basic function formed from open knot vector has interpolatory property at the 

ends of the parametric interval but has not, in general, the interpolatory property at the 

interior knots. In this paper the open knot vector is considered. 

 

2.2 B-spline basic functions 

 

B-spline basic functions are defined recursively starting with p = 0 as: 
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for p>0. 

 

The functions defined in Eq. (2) and Eq. (3) fulfil the necessary conditions for basic 

functions, such as linear independence and partition of unity. Also, the non-negativity of 

the functions affects the mass matrix property of the isogeometric element i.e. all terms 

in this matrix are positive valued terms. Also, if the interval knots are not repeated, the 

functions are Cp-1 continuous. However, if a knot has the multiplicity k, the function is 

Cp-k continuous at the particular knot. This means that basic function may have 

interpolatory property at the interior knot if the knot has the multiplicity p. 

 

2.3 B-spline curves 

 

B-spline curve S(ξ) of order p can be obtained as a linear combination of B-spline basic 

functions: 

 

   ,

1

n

i p i

i

S N C 


  (4) 

 

where n is the number of control points, Ni,p(ξ) are B-spline basic functions of order p 

and Ci is control point. It should be noted that the B-spline curves also have the same 

property as the basic functions defined in the previous section.  

 

2.4 NURBS 

 

NURBS is rational representation of the B-spline curve. The pth-degree NURBS curve is 

defined analogously to (4) as: 
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where n is the number of control points, Ni,p(ξ) is a B-spline basic function of the order 

p, Ci is control point and fi is weight. Curves defined by Eq. (5) can be used to exactly 

model the geometry of circles, ellipses, hyperbolas, etc. that cannot be modelled with the 

B-spline curves. More about these functions, their properties and application can be 

found in literature [3]. 
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3. ISOGEOMETRIC FORMULATION 
 

In this chapter the isogeometric approach will be used to solve the free vibration problem 

of beam element. Two beam theories, Bernoulli-Euler and Timoshenko beam theory will 

be considered. 

 

3.1 Bernoulli-Euler beam theory 

 

The governing differential equation of motion for Bernoulli-Euler beam is given as: 

 
4 2

4 2
0

w w
EI A

x t


 
 

 
 (6) 

 

where w=w(x,t) is the transverse displacement, E is the elastic modulus, I is the second 

moment of area, ρ is the mass density of material, A is the cross sectional area. 

Using the Galerkin method, a weak formulation of the free vibration problem is obtained 

as: 

 
2 2 2

2 2 2

0 0

0

L L
w w w

EI A w
x x t

  
   

  
   

   (7) 

 

where L is the length of the beam and the notation δ denotes that the term is virtual. 

In order to transform the Eq. (6) into a system of algebraic equations, the relevant 

derivation takes place in the finite-dimensional subspace. Since only straight beam will 

be analyzed in this paper, the weights in Eq. (5) are equal to 1. Thus, the subspaces are 

defined by using the B-spline basis: 

 

 
1

ˆ ˆ
m

i i

i

w N w


  Nw  (8) 

 

where m is the total number of control points in the discretized domain, N is the vector 

consisting of basic functions, while ŵ represents the vector consisting of control points. 

The virtual term associated with the displacements is: 

 

 
1

ˆ ˆ
m

i i

i

w N w   


  N w  (9) 

 

By substituting Eq. (8) and Eq. (9) into Eq. (7) yields: 

 
2

2

ˆ
ˆ ˆ 0

t


 
  

 

w
w Kw M  (10) 

 

Since the virtual displacement ˆw is arbitrary, the above equation may be written as: 
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

w
Kw M  (11) 

 

In Eq. (10) and Eq. (11) K and M represents respectively the structural stiffness and 

mass matrices and can be explicitly written as: 

 
2 2

2 2

0

0

L T

L
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EI dx
x x

A dx
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N N
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General solution of Eq. (11) may be written as: 

 

ˆ e ki

k


w ψ  (13) 

 

Substituting Eq. (13) into Eq. (11) yields: 

 
2 0k k   K M ψ  (14) 

 

where ψk is the modal vector, ωk is the natural circular frequency associated with the kth 

mode. Global stiffness matrix K and global mass matrix M contain the contributions of 

the isogeometric element stiffness and mass matrices. 

As mentioned before, the basic functions at the interior knots don’t have the 

interpolatory property and the rotation cannot be imposed directly. This is the main 

reason for introducing the rotation-free beam element. The main property of this element 

is that it has no rotation degrees of freedom i.e. the displacements are the only 

considered degrees of freedom. The problem related to the rotation-free element arises 

when the rotation boundary condition has to be enforced. In order to solve this problem 

Lagrange multiplier can be used [4]. More about this method will be presented in the 

numerical example.  

  

3.2 Timoshenko beam 

 

The governing differential equations of motion for Timoshenko beam are given as: 

 
2 2

2 2

2 2

2 2

0
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w w
kAG A

xx t

w
EI kAG I

xx t




 
 
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   
  

   
    
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 (16) 
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where w is transverse displacement, φ is rotation of the beam, k is the shear coefficient, 

A is the cross section area, G is the shear modulus, ρ is the mass density, E is the elastic 

modulus, I is the second moment of area. 

 

The weak formulation of Eq. (16) is obtained by using the Galerkin method in the 

following form: 
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where L is the length of the beam element, q is the vector of generalised displacements, 

L is operator matrix, EK is the matrix consisting of geometric and material properties of 

the beam, EM is the matrix consisting of inertia properties of beam and δ denotes virtual 

generalised displacements. 

The subspaces for Timoshenko beam isogeometric element are defined as: 
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The virtual terms associated with the displacements are: 
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By substituting Eq. (18) and Eq. (19) into Eq. (17) Eq. (14) is obtained and the structural 

stiffness and mass matrices are given as: 

0

0

L

T T

K

L

T

M

dx

dx









K N L E LN

M N E N

 (20) 

 

 

4. NUMERICAL EXAMPLE 

 
The isogeometric approach presented in the previous sections is applied in the free 

vibration analysis of straight beam given in Figure 1. The Poisson’s ratio is ν = 0.2 and 

the shear coefficient is k = 5/6.  

 

 
 

Figure 1: Beam element and boundary conditions 

 

In order to illustrate the convergence and accuracy of the isogeometric approach, the first 

10 dimensionless natural frequencies 2

2

i

i

A
L

EI

 


   are computed. The results are 

compared with the results obtained by using the dynamic stiffness method (DSM) [7] 

and the finite element software Abaqus [8]. The DSM is based on the exact solutions of 

the equations of motion and consequently, yields the exact natural frequencies for beam 

element. In the numerical examples for IGA the basic functions of the second order are 

applied. The number of the isogeometric elements has been changed in order to analyse 

the convergence and accuracy of the results. 

 

4.1 Bernoulli-Euler beam 

 

The Bernoulli-Euler beam is first investigated by the presented isogeometric element. As 

illustrated in Figure 1, the left end of the beam is clamped i.e. the displacement and 

rotation is zero. In order to impose this boundary condition for rotation-free beam the 

Lagrange multiplier is used and Eq. (7) is modified by introducing the additional term: 

 
2 2 2

2 2 2

0 00 0

0

0

0

L L

x x

x

w w w w w
EI A w

x xx x t

w

x

    
 



     
    

    
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 
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where λ is Lagrange multiplier.  
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The dimensionless natural frequencies are computed for different number of 

isogeometric elements and presented in Table 1. Moreover, in this table the 

dimensionless natural frequencies have also been computed by the DSM and Abaqus. 

The beam is modelled using 500 finite elements using Abaqus. It can be noted that as the 

number of isogeometric elements increases the natural frequencies computed using the 

IGA converge to the exact solutions.  

 

Table 1: First ten dimensionless frequencies of Bernoulli-Euler beam 

Mode 

No. 

IGA Exact 

solution 

(DSM) 

Abaqus 
10 20 30 40 50 

1 2.48 2.46 2.46 2.46 2.45 2.46 2.45 

2 8.20 8.01 7.98 7.97 7.96 7.96 7.95 

3 17.58 16.83 16.70 16.65 16.63 16.59 16.59 

4 31.19 29.03 28.66 28.53 28.48 28.38 28.37 

5 49.85 44.79 43.95 43.66 43.53 43.34 43.29 

6 74.58 64.32 62.65 62.08 61.82 61.36 61.36 

7 106.04 87.89 84.86 83.84 83.38 82.59 82.57 

8 141.88 114.84 110.73 109.03 108.26 106.9 106.91 

9 170.0 148.54 140.41 137.73 136.52 134.39 134.4 

10 - 186.45 174.08 170.02 168.20 165.05 165.03 

 

The first five mode shapes obtained using the isogeometric approach are presented in 

Figure 2. 

 

 
Figure 2: First five mode shapes of Bernoulli-Euler beam 

 

4.2 Timoshenko beam 

 

The dimensionless natural frequencies of Timoshenko beam computed using the 

isogeometric approach are compared with the results obtained using the DSM and 

Abaqus. As in previous example, the beam is modelled using 500 finite elements. The 

results are presented in Table 2. Excellent agreement has been achieved between the 

present solution and the solutions obtained using the DSM and Abaqus for lower 
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vibration modes. For higher vibration modes, a larger number of isogeometric elements 

are required in the analysis. The first five mode shapes of Timoshenko beam are 

presented in Figure 3. 

 

Table 2: First ten dimensionless natural frequencies of Timoshenko beam 

Mode 

No. 

IGA Exact 

solution 

(DSM) 

Abaqus 
10 20 30 40 50 

1 2.33 2.33 2.33 2.33 2.33 2.33 2.33 

2 7.02 7.00 7.00 7.00 7.00 7.00 7.02 

3 13.39 13.33 13.33 13.33 13.33 13.26 13.37 

4 20.93 20.70 20.70 20.69 20.69 20.43 20.77 

5 29.43 28.73 28.70 28.70 28.70 28.06 28.82 

6 39.02 37.16 37.11 37.10 37.10 35.90 37.28 

7 50.13 45.88 45.76 45.75 45.74 43.83 45.99 

8 63.00 54.80 54.58 54.54 54.54 51.75 54.86 

9 75.91 63.91 63.48 63.43 63.41 59.66 63.81 

10 78.62 73.18 72.44 72.34 72.32 67.56 72.80 

 

 
Figure 3: First five mode shapes of Timoshenko beam 

 

 

5. CONCLUSION 
 

The application of the isogeometric approach in the free vibration analysis of beam 

element is presented in this paper. The B-spline basic functions have been used for 

general displacement representation. The stiffness and mass matrices have been 

developed for Bernoulli-Euler and Timoshenko beam theory. In the case of Bernoulli-

Euler beam theory the rotation-free element is introduced by using the Lagrange 

multiplier in order to enforce the rotation boundary condition. The free vibration analysis 

has been conducted for beam with specific boundary conditions using the isogeometric 

approach. The numerical example has shown good performance and accuracy of the 

method in comparisson with the results obtained from the DSM and FEM.  
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АНАЛИЗА СЛОБОДНИХ ВИБРАЦИЈА ГРЕДЕ 

КОРИШЋЕЊЕМ ИЗОГЕОМЕТРИЈСКЕ АНАЛИЗЕ 

 
Резиме: Изогеометријска анализа (ИГА) се базира на концепту коришћења истих 

функција за описивање поља померања констукције као и геометрије 

недеформисаног модела. Најчешће коришћене базне функције у ИГА су NURBS 

фунцкије. У овом раду, ИГА је коришћена у анализи слободних вибрација гредног 

елемента. Да би се добили потребни резултати, матрица крутости и матрица 

маса је изведена за Bernoulli-Euler-ову греду код које су непознате само попречна 

померања, као и Timoshenko-ву греду помоћу Galerkin-ове методе. Нумеричка 

анализа приказана је на примеру гредног елемента са конкретним граничним 

условима. Тачност резултата добијених помоћу ИГА је проверена поређењем са 

резултатима добијеним методом динамичке крутости и методом коначних 

елемената. 

 

Кључне речи: Изогеометријска анализа, слободне вибрације, Bernoulli-Euler-ова 

греда, Timoshenko-ва греда  

 

 


