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Summary: Isogeometric analysis (IGA) is based on a concept that uses the same base
functions for description of displacement field and undeformed model geometry. The
most common base functions used in the IGA are NURBS functions. In this paper, the
IGA is applied in the free vibration analysis of beam element. The stiffness and mass
matrices have been developed for rotation-free Bernoulli-Euler and Timoshenko beam
using the Galerkin method. Natural frequencies of beam element with specific boundary
conditions have been computed using the isogeometric approach. The results were
compared with the exact analytical solutions obtained by using the dynamic stiffness
method (DSM) and the conventional finite element method (FEM).

Keywords: isogeometric analysis, free vibrations, Bernoulli-Euler beam, Timoshenko
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1. INTRODUCTION

Beam elements represent one of the basic components in civil engineering structures.
These structures are often subjected to dynamic excitation and thus the free vibration
analysis of beams is of great importance. The vibration analysis is usually conducted
using Bernoulli-Euler beam, but for thick beams, especially for high modes of vibration
this theory does not provide adequate results. In such cases, the Timoshenko beam has to
be used where the transverse shear deformation and rotatory inertia effect has been
included [1]. Different approaches can be used for free vibration analysis of engineering
structures such as finite element method (FEM), dynamic stiffness method (DSM),
isogeometric analysis (IGA), etc.

The IGA was first introduced by Hughes [2]. Hughes and his associates presented
capability and potential for usage of NURBS basic functions in structural analysis.
Previously, NURBS functions, developed by Piegl [3], were used for representation,
design, and data exchange of geometric information processed by computers. Cottrell et
al. [4] used the IGA in vibration analysis of elastic rod, Bernoulli-Euler beam, membrane
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and Poisson-Kirchhoff plate. Also, Lee and Park [5] analysed the free vibration of
Timoshenko beam for various boundary conditions using the isogeometric approach.

In this paper the isogeometric approach is applied in the free vibration analysis of
Bernoulli-Euler and Timoshenko beams. The isogeometric elements have been
implemented in the program coded in MATLAB [6] and used to compute free vibration
characteristics of straight beam with specific boundary conditions.

2. ISOGEOMETRIC ANALYSIS

Isogeometric analysis is approach based on idea that the analysis model uses the same
mathematical description as the geometry model. The approach states that the same
functions used for geometry description in CAD (Computer Aided Design) are adopted
in the analysis for the geometry and solution field. This approach is useful because it
merges design and analysis into one model.

In the IGA, the domain consists of couple patches and each patch can be considered as a
macro-element. The patch is defined over a parametric domain, which is divided by a
knot vector. The intervals defined by a knot vector represent the IGA element. Similar to
the FEM, an IGA element is specified by a set of nodes and corresponding basic
functions. The nodes are IGA control points. They carry degree of freedom for the
analysis and the boundary conditions are applied to them. As mentioned before, the basic
functions used in the IGA are the same functions used for geometry description of the
model. In general, these functions are not bound to one IGA element but extended over a
series of elements. This property of basic functions allows higher continuities of shape
functions over the element boundaries. However, these elements can be treated exactly
in the same way as the conventional finite elements. The stiffness and mass matrices are
evaluated on the element level and assembled to the global stiffness and mass matrices.
More about the knot vector and basic functions will be presented in following.

2.1 Knot vector

A knot vector 9 represents a set of non-decreasing real values &, known as knots, in the
parametric space:

0=[&, & & s & s Eripa | (1)

where n is a number of basic functions and p is an order of the basic function. A knot
vector is said to be uniform if its components are uniformly spaced. Moreover, a knot
vector is said to be open or clamped if its first and last knots have the multiplicity equals
to p+1. Basic function formed from open knot vector has interpolatory property at the
ends of the parametric interval but has not, in general, the interpolatory property at the
interior knots. In this paper the open knot vector is considered.

2.2 B-spline basic functions

B-spline basic functions are defined recursively starting with p = 0 as:
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for p>0.

The functions defined in Eq. (2) and Eq. (3) fulfil the necessary conditions for basic
functions, such as linear independence and partition of unity. Also, the non-negativity of
the functions affects the mass matrix property of the isogeometric element i.e. all terms
in this matrix are positive valued terms. Also, if the interval knots are not repeated, the
functions are CP! continuous. However, if a knot has the multiplicity k, the function is
CP* continuous at the particular knot. This means that basic function may have
interpolatory property at the interior knot if the knot has the multiplicity p.

2.3 B-spline curves

B-spline curve S¢¢) of order p can be obtained as a linear combination of B-spline basic
functions:

$(£)=2N, ()G 4)

i=1

where n is the number of control points, Niy(&) are B-spline basic functions of order p
and C; is control point. It should be noted that the B-spline curves also have the same
property as the basic functions defined in the previous section.

2.4 NURBS

NURBS is rational representation of the B-spline curve. The p'"-degree NURBS curve is
defined analogously to (4) as:

s()=T ®)

where n is the number of control points, Niy(&) is a B-spline basic function of the order
p, Ci is control point and f; is weight. Curves defined by Eq. (5) can be used to exactly
model the geometry of circles, ellipses, hyperbolas, etc. that cannot be modelled with the
B-spline curves. More about these functions, their properties and application can be
found in literature [3].
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3. ISOGEOMETRIC FORMULATION

In this chapter the isogeometric approach will be used to solve the free vibration problem
of beam element. Two beam theories, Bernoulli-Euler and Timoshenko beam theory will
be considered.

3.1 Bernoulli-Euler beam theory

The governing differential equation of motion for Bernoulli-Euler beam is given as:

o'w o'w

where w=w(xt) is the transverse displacement, E is the elastic modulus, | is the second
moment of area, p is the mass density of material, A is the cross sectional area.

Using the Galerkin method, a weak formulation of the free vibration problem is obtained
as:

L Pw (oPw) & 2w
El o +| pA ow=0 7
.([ aXZ aXZ .(')‘p atZ ( )

where L is the length of the beam and the notation 6 denotes that the term is virtual.

In order to transform the Eq. (6) into a system of algebraic equations, the relevant
derivation takes place in the finite-dimensional subspace. Since only straight beam will
be analyzed in this paper, the weights in Eq. (5) are equal to 1. Thus, the subspaces are
defined by using the B-spline basis:

m

w=>"N, (&)W = NW (8)

i=1

where m is the total number of control points in the discretized domain, N is the vector
consisting of basic functions, while W represents the vector consisting of control points.
The virtual term associated with the displacements is:

sw=>"N, (£)8 = Néw (©)

i=1

By substituting Eq. (8) and Eq. (9) into Eq. (7) yields:

2

2.A
5W{KW+M6&W}=O (10)

Since the virtual displacement W is arbitrary, the above equation may be written as:
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W
v

KW+ M 0 (11)

In Eg. (10) and Eg. (11) K and M represents respectively the structural stiffness and
mass matrices and can be explicitly written as:

o OX OX
(12)

L
M = [NpAN" dx
0

L A2 20T
K:IaN 0°N

General solution of Eq. (11) may be written as:
W=y, e (13)
Substituting Eqg. (13) into Eq. (11) yields:
[K-ofM]y, =0 (14)

where wy is the modal vector, wx is the natural circular frequency associated with the ki
mode. Global stiffness matrix K and global mass matrix M contain the contributions of
the isogeometric element stiffness and mass matrices.

As mentioned before, the basic functions at the interior knots don’t have the
interpolatory property and the rotation cannot be imposed directly. This is the main
reason for introducing the rotation-free beam element. The main property of this element
is that it has no rotation degrees of freedom i.e. the displacements are the only
considered degrees of freedom. The problem related to the rotation-free element arises
when the rotation boundary condition has to be enforced. In order to solve this problem
Lagrange multiplier can be used [4]. More about this method will be presented in the
numerical example.

3.2 Timoshenko beam

The governing differential equations of motion for Timoshenko beam are given as:

2 2
kAG(a w_a_goJ_pAa w_,

oZ  ox ot? )
B9 a1 2P
o x )P
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where w is transverse displacement, ¢ is rotation of the beam, k is the shear coefficient,
A is the cross section area, G is the shear modulus, p is the mass density, E is the elastic
modulus, | is the second moment of area.

The weak formulation of Eq. (16) is obtained by using the Galerkin method in the
following form:

v PR S,
. a Ey a 5q
Im OX KAG 0 || px oW s
P oo E 2 | o0
OX OX an
Woa A 0 |low
+Ia—2[w 9] r dx=0
got°— = 0 pl || op
¢ =9 oq

where L is the length of the beam element, q is the vector of generalised displacements,
L is operator matrix, Ex is the matrix consisting of geometric and material properties of
the beam, Ey is the matrix consisting of inertia properties of beam and J denotes virtual
generalised displacements.

The subspaces for Timoshenko beam isogeometric element are defined as:

i=1 j=1
w X
q= =Nq
® (18)
N, 0 N, O0 N, 0
N =
O N, 0 N, 0 N,
qT :[W1 @1 VA\’z é’z VAVm é’m]

sw=>YN,(&)ow, Sp =2 N, (&)5p;
i=1 =1
oW N
5q={ }Nﬁq
op (19)
N_ Nl 0 NZ O Nm O
o N, 0 N, 0 N,
5qT =[5W1 5@1 OW, 5(52 e oWy 5¢3m]
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By substituting Eq. (18) and Eq. (19) into Eq. (17) Eq. (14) is obtained and the structural
stiffness and mass matrices are given as:

L
K = [NTL"E, LNdx
°L (20)
M = [N"E,, Ndx
0

4. NUMERICAL EXAMPLE

The isogeometric approach presented in the previous sections is applied in the free
vibration analysis of straight beam given in Figure 1. The Poisson’s ratio is v = 0.2 and
the shear coefficient is k = 5/6.

\

Figure 1: Beam element and boundary conditions

In order to illustrate the convergence and accuracy of the isogeometric approach, the first
. . . . , A
10 dimensionless natural frequencies €, :;)—'L2 /I)E_I are computed. The results are
V4

compared with the results obtained by using the dynamic stiffness method (DSM) [7]
and the finite element software Abaqus [8]. The DSM is based on the exact solutions of
the equations of motion and consequently, yields the exact natural frequencies for beam
element. In the numerical examples for IGA the basic functions of the second order are
applied. The number of the isogeometric elements has been changed in order to analyse
the convergence and accuracy of the results.

4.1 Bernoulli-Euler beam

The Bernoulli-Euler beam is first investigated by the presented isogeometric element. As
illustrated in Figure 1, the left end of the beam is clamped i.e. the displacement and
rotation is zero. In order to impose this boundary condition for rotation-free beam the
Lagrange multiplier is used and Eq. (7) is modified by introducing the additional term:

L 2 2 L 2
jEla"z"a‘ W sy M s +j,oAa ¥ ow=0
o OX OX OX |,g Xleo o ot
(1)
ow
OX oo

where A is Lagrange multiplier.
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The dimensionless natural frequencies are computed for different number of
isogeometric elements and presented in Table 1. Moreover, in this table the
dimensionless natural frequencies have also been computed by the DSM and Abaqus.
The beam is modelled using 500 finite elements using Abaqus. It can be noted that as the
number of isogeometric elements increases the natural frequencies computed using the
IGA converge to the exact solutions.

Table 1: First ten dimensionless frequencies of Bernoulli-Euler beam

IGA Exact
Mode solution  Abaqus
No. 10 20 30 40 50 (DSM)
2.48 2.46 2.46 2.46 2.45 2.46 2.45
8.20 8.01 7.98 7.97 7.96 7.96 7.95

17.58 16.83 16.70 16.65 16.63 16.59 16.59
31.19 29.03 28.66 28.53 28.48 28.38 28.37
49.85 44.79 43.95 43.66 43.53 43.34 43.29
74.58 64.32 62.65 62.08 61.82 61.36 61.36
106.04 87.89 84.86 83.84 83.38 82.59 82.57
141.88 114.84 110.73 109.03 108.26 106.9 106.91
170.0 148.54 140.41 137.73 136.52 134.39 134.4
- 186.45 174.08 170.02 168.20 165.05 165.03

Boo~vouoh~rwNnr

The first five mode shapes obtained using the isogeometric approach are presented in
Figure 2.

Istmode

(irc‘lmode‘/Z/n‘QIfngdi‘

1 1 1 1 1
0 0.5 1 LS 2 2.5 3 3.5 4 4.5 5
X

Figure 2: First five mode shapes of Bernoulli-Euler beam

4.2 Timoshenko beam

The dimensionless natural frequencies of Timoshenko beam computed using the
isogeometric approach are compared with the results obtained using the DSM and
Abaqus. As in previous example, the beam is modelled using 500 finite elements. The
results are presented in Table 2. Excellent agreement has been achieved between the
present solution and the solutions obtained using the DSM and Abaqus for lower
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vibration modes. For higher vibration modes, a larger number of isogeometric elements
are required in the analysis. The first five mode shapes of Timoshenko beam are
presented in Figure 3.

Table 2: First ten dimensionless natural frequencies of Timoshenko beam

IGA Exact
l\?l\lode 10 20 30 40 50 solution  Abaqus

0. (DSM)
1 2.33 2.33 2.33 2.33 2.33 2.33 2.33
2 7.02 7.00 7.00 7.00 7.00 7.00 7.02
3 13.39 13.33 13.33 13.33 13.33 13.26 13.37
4 20.93 20.70 20.70 20.69 20.69 20.43 20.77
5 29.43 28.73 28.70 28.70 28.70 28.06 28.82
6 39.02 37.16 37.11 37.10 37.10 35.90 37.28
7 50.13 45.88 45.76 45.75 45.74 43.83 45.99
8 63.00 54.80 54.58 54.54 54.54 51.75 54.86
9 75.91 63.91 63.48 63.43 63.41 59.66 63.81
10 78.62 73.18 72.44 72.34 72.32 67.56 72.80

T T T T T T
Sthmode, /4thmode /3rd mode _

\an mode 1st mode
0 0.5 1 1.5 2 2.5 3 35 4 4.5 5
X

Figure 3: First five mode shapes of Timoshenko beam

5. CONCLUSION

The application of the isogeometric approach in the free vibration analysis of beam
element is presented in this paper. The B-spline basic functions have been used for
general displacement representation. The stiffness and mass matrices have been
developed for Bernoulli-Euler and Timoshenko beam theory. In the case of Bernoulli-
Euler beam theory the rotation-free element is introduced by using the Lagrange
multiplier in order to enforce the rotation boundary condition. The free vibration analysis
has been conducted for beam with specific boundary conditions using the isogeometric
approach. The numerical example has shown good performance and accuracy of the
method in comparisson with the results obtained from the DSM and FEM.
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AHAJIM3A CJIOBOJHUX BUBPALINJA TPEJE
KOPUITREBEM N30I'EOMETPUJCKE AHAJIN3E

Pezume: Hzoeeomempujcka ananusa (UI'A) ce 6azupa na konyenmy xopuwheroa ucmux
Qyukyuja  3a  onucusare NObA NOMEPARA  KOHCMYKYUje Kao u 2eomempuje
Hedeopmucanoe moodena. Hajuewhe xopuwhene 6asne gynxyuje y UT'A cy NURBS
¢dynykuje. ¥V o6om pady, Ul'A je kopuwhena y ananusu croboonux eubpayuja epeonoe
enremenma. /la 6u ce 0obunu nompebHU pe3yaimamu, Mampuya Kpymocmu u mMampuya
maca je uzseoena 3a Bernoulli-Euler-oey epedy ko0 koje cy nenosname camo nonpeuna
nomepara, xkao u Timoshenko-ey epedy nomolhy Galerkin-ose memooe. Hymepuuka
AHAU3A NPUKA3AHA je HA Npumepy epeoH0Z eleMeHmd Ca KOHKPEeMHUM ZPAHUYHUM
yenosuma. Taunocm pesynmama dobujenux nomohy UI'A je npoeepena nopeherem ca
pe3yrmamuma 000ujeHumM MemooomM OUHAMUYKE KPYMOCMU U MemooOM KOHAYHUX
enemenama.

Kwyune peuu. Hzozeomempujcka ananuza, crobooune subpayuje, Bernoulli-Euler-osa
2peda, Timoshenko-sa epeda

| CONFERENCE PROCEEDINGS INTERNATIONAL CONFERENCE (2016) |



