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Summary: Free vibrations of rectangular plates with uniform thickness and with
rectangular cutouts are investigated. Plates are modeled using finite strip method where
the displacement field is approximated with product of trigonometric and polynomial
Sfunctions. In order to analyze the influence of polynomial order, two types of strips are
utilized: LO2 and HO3. Strips are divided into cells in longitudinal direction, and the
zero stiffness is given for cells which represent cutouts. Presented approach is coded
using Wolfram Mathematica. Numerical tests contain comparison of results and
convergence properties for LO2 and HO3 strips. Obtained results are in good
agreement with data available in literature.
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1. INTRODUCTION

Bending of thin plates is commonly used during initial testing and developing of new
analytical and numerical procedures. Finite strip method (FSM) is one of the most
suitable procedures for analysis of thin plates with regular geometries, [ HYPERLINK \l
"DDM97" ! ]. One of the main drawbacks of this method is its inability to describe
discontinuities such as abrupt changes of thickness, cutouts and similar. Some authors
already dealt with this problem, using the negative stiffness approach, 2], [
HYPERLINK \I "Bui09" 3 ],*]. Only the free vibration and buckling analyses are
performed since, for them, the effects of localization and stress concentration can be
ignored without prejudicing the accuracy of the solution.

In this paper, two types of finite strips are utilized and their performance is examined
through detailed numerical test of free vibrations of rectangular plate with two cutouts.
Presented approach uses standard trigonometric functions which allow modeling of all
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types of boundary conditions, contrary to classical FSM approach where the simply
supported strip is mostly used.
Brief theory overview is given, followed with numerical example and conclusions.

2. THEORY OVERVIEW

Rectangular low order finite strip with two nodal lines (LO2), Figure 1, has four degrees
of freedom in bending, [ HYPERLINK \l "DDM97" ! ]. Degrees of freedom in the
FSM are displacement parameters of nodal lines which represent weighting coefficients
of each series term Y,, in total displacement field, (1). This series is chosen as free
vibration eigenfunctions of Bernoulli-Euler beam, which enables modeling of all types
of boundary conditions.

boundary conditions 7y

nodal lines j and j+1

Figure 1. Flat rectangular LO?2 finite strip for m=1 - part of the discretised structure
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Besides LO2 strip, high order strip with three nodal lines (HO3) is also utilized here.
This strip has additional nodal line in the middle of the strip. Accordingly, interpolating
polynomial, w,,, for LO2 strip is of the third, and for HO3 strip of the fifth order.

In order to model cutouts, strip is divided into cells, Figure 2. During the evaluation of
stiffness and mass matrices, integration is performed across each cell and then summed,
(2). In this way, strip with different properties in longitudinal direction is introduced. It
should be noted that, with this approach, displacement function is continuous over
cutouts. This implies that large number of series terms should be used in analysis if local
effects are considered.
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Figure 2. Division of strip into cells in longitudinal direction
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3. NUMERICAL EXAMPLE

Presented approach is programmed using software package Wolfram Mathematica. The
code is built upon software LEDA presented in [ HYPERLINK \l "Bor131" 2].

The numerical research includes simply supported squared plates with two rectangular
cutouts, *], with disposition of cutouts as in Figure 3. The plates were modeled with 20
strips and three cells in longitudinal direction. In order to examine the convergence
between two types of strips, numerical calculation was carried out by varying number of
series terms. Natural frequency coefficient (ph/D)"’w;a’ is given as a result.

y

b

U]

x; X5 a x
Figure 3. Disposition of cutouts and notations

First numerical test is performed for cutouts located along the middle horizontal axis of
the plate (C1). Three plates having different space between cutouts were monitored, see
Figure 2. Results are presented in Table 1. Then the other case of plates, using cutouts
diagonally, is observed (C2). This case and disposition of cutouts are displayed on
Figure 3 while results are listed in Table 2. Convergence of relative difference between
FSM and Ref. [ HYPERLINK \l "Ava03" 3] results for case C1 is given in Figure 6.
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Figure 4. Case of cutouts placed along the middle horizontal axis - C1
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Figure 5. Case of cutouts located along the plate diagonal - C2

Table 1. The first four frequency coefficients for case C1

Size of the Cutouts position FSM Reference
cutouts LO2 HO3 3
Figure 4 a) 19.542 | 19.542 19.324
48939 | 48.937 48.769
x1/a=0.4 y1/6=0.50 49297 | 49297 49.136
x2/a=0.6 y2/b=0.50 78.184 | 78.184 78.035
Figure 4 b) 19.639 | 19.639 19.550
a1/a=0.1=b1/b 48.608 | 48.604 48.265

a2/a=0.1=bo/b x1/a=0.2 y1/b=0.50 49.027 | 49.027 48.946
x2/2=0.80 y2/b=0.50 78.822 | 78.821 78.621

Figure 4 c) 19.719 | 19.719 19.707
48.869 | 48.869 48816
x1/a=0.05 y1/b=0.50 | 49.118 | 49.116 49.035
x2/a=0.95 y2/b=0.50 | 77.873 | 77.873 77.722

Figure 4 a) 19.192 | 19.189 19.066
47364 | 47.359 46.324
x1/a=0.35 y1/b=0.50 | 48.103 | 48.102 47300
x2/a=0.65 y2/b=0.50 76.561 | 76.559 74.957

Figure 4 b) 19.170 | 19.169 19.121
a1/a=0.2=b1/b 47784 | 47.784 47.009
a2/a=0.2=by/b x1/a=0.20 y1/b=0.50 | 47.901 | 47.898 47778
x2/a=0.80 y2/b=0.50 | 77.357 | 77.355 75.402

Figure 4 c) 19337 | 19.337 19.332
46.959 | 46.955 46.972
x1/a=0.10 y1/b=0.50 | 47.495 | 47.495 47.058
x2/a=0.90 y2/b=0.50 | 75427 | 75.427 74.066
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Figure 6. Convergence of relative difference for case CI
Table 2. The first four frequency coefficients for case C2
Size of the Cutouts position FSM Reference
cutouts LO2 HO3 [
Figure 5 a) 19.542 19.542 19.339
48.965 48.963 48.605
x1/a=0.40 y1/b=0.40 49.172 49.171 49.050
x2/a=0.60 y2/b=0.60 78.373 78.372 78.160
Figure 5 b) 19.575 | 19.574 19.527
a1/a=0.1=bi/b 49.082 49.081 48.660
az/a=0.1=bo/b x1/a=0.20 y1/b=0.20 49.192 49.192 49.160
x2/a=0.80 y2/b=0.80 78.869 | 78.867 78.074
Figure 5 c) 19413 | 19.413 19.402
48.365 48.364 48.316
x1/a=0.05 y1/b=0.05 49.345 49.345 49.347
x2/a=0.95 y2/b=0.95 77.745 | 77.745 77.644
Figure 5 a) 19.048 | 19.047 18.902
47.308 47.303 46.988
x1/a=0.35 y1/b=0.35 48.742 48.737 48.308
x2/a=0.65 y2/b=0.65 78.088 | 78.076 77.417
Figure 5 b) 18.936 | 18.935 18.863
a1/a=0.2=b1/b 48.366 48.363 47.980
a2/a=0.2=ba/b x1/a=0.20 y1/b=0.20 48.536 48.535 48.511
x2/a=0.80 y2/b=0.80 80.094 | 80.090 79.667
Figure 5 c) 18.517 18.516 18.503
45.901 45.895 45.816
x1/a=0.10 y1/b=0.10 49.188 49.188 49.191
x2/a=0.90 y2/b=0.90 74.949 | 74.938 74.792
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4. CONCLUSIONS

Main advantage of FSM is its semi-analytical nature which guarantees faster
convergence than purely numerical procedures such as Finite element method.
Consequently, its main disadvantage is inability to model discontinuities in longitudinal
direction, since this part of displacement field is approximated with continuous
trigonometric functions. This problem can be solved using negative stiffness method
which is based on integration by segments along strip. In this way computational time is
increased, but not significantly. On the other hand, effects of cutouts, abrupt changes of
thickness and different material properties can be analyzed.

Obtained results show excellent agreement with the ones from literature. Convergence of
frequencies by number of series terms is good, while the influence of polynomial order
is insignificant for the presented type of problem.

Next step is introduction of membrane effects into strips which will enable modeling of
prismatic shells.
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CJIOBOJHE BUBPAIIMJE ITPABOYTI'AOHHUX IIVIOYA
CA OTBOPUMA ITPUMJEHOM METO/JIA
KOHAYHHUX TPAKA

Pezume: Pasmamparne cy cioboO0He eubpayuje npasoyeaoHux nio4a KOHCMAHMHe
debmune ca npasoyzaonum omeopuma. Ilioue cy modenupane npumjeHom memooa
KOHAYHUX mMpaKa npu uemy je nome HoMjeparsa anpoKCUMUPAHO NpouU3e000M
MPUSOHOMEMPUJCKUX U NOTUHOMHUX QYHKYuja. ¥V yuwsy ucnumuearna ymuyaja peoa
noaunoma, npumujersena cy oeéa muna mpaka: LO2 u HO3. Tpaxe cy y nooysicrom
npasyy nooujemere HA cecMeHme, Npu Yemy je cecMeHmuma 2oje ce HAIa3u Omeop
npuopyoicena Hynma kpymocm. Ilpedcmasmenu npucmyn je xooupawn y naxemy Wolfram
Mathematica. Kpo3z Hymepuuke mecmose cy ynopehenu pesyimamu U mun
xousepeenyuje LO2 u HO3 mpaka. [obujenu pezyimamu ¢y y cazilacHOCMuU ca OHUMA
u3 aumepamype.

Kuyune peuu: memoo xonaunux mpaxa, crobooHe subpayuje, niode ca omsopumda
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