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Summary: This paper presents the development of a one-dimensional, looped river
network model with a dam as an internal boundary condition. The one-dimensional de
Saint-Venant equations were discretized using the Preissmann’s scheme. The discretized
equations are then linearized and solved using the Newton-Raphson’s iterative
algorithm combined with the Thomas (double-sweep) algorithm. In order to
accommodate flow simulation in looped river networks, the regular equations are
supplemented with additional equations necessary when simulating flow in complex
river systems.
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1. INTRODUCTION

The objective of this paper is to present the development of a one-dimensional flow
model for a looped river network. The significance of 1-D models is reflected through
their suitability to help solve various hydraulic problems. For example, Ward et al.
developed a numerical model used to estimate the net flow through the Chesapeake and
Delaware canal [1]. Islam et al. established a model for steady and unsteady flow
simulation in an irrigation canal network [2], capable of handling different hydraulic
structures. These open channel flow models also found their relevance in long term
simulations, river network modeling, flood predictions, etc.

The developed numerical model was formulated to support water flow modeling in
looped river network with a dam as an internal boundary condition.

2. GOVERNING EQUATIONS

The one-dimensional de Saint-Venant equations, used in modeling open channel flow [3,
4, 5], consist of the continuity and momentum equation, Eqgs.(1),
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where ® denotes the flow cross-section area, ¢ is the time parameter, Q marks the flow
discharge, x is the spatial coordinate consistent with the flow direction (Fig. 1), a is the
velocity distribution coefficient, g the gravitational acceleration, Z the water free-surface
elevation and Sy the friction slope.
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Figure 1. Computational grid

3. DISCRETIZATION AND THE NUMERICAL SOLUTION

The 1-D space is defined by a number of computational points (Fig. 1) along x. The
position of these points is determined by the index 7, that takes values form i=1 at the
upstream to 7=/ at the downstream end. The governing Egs. (1) can be discretized with
various schemes. Here the Preissmann's scheme is applied. The obtained Egs. (2)
expressed as functions of the unknowns and respectively present the continuity and
momentum equation,
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where index i marks the computational point along x, while K denotes hydraulic
conveyance defined through the Strickler's coefficient ¢ as

K=¢ o R", 3)

where R is the hydraulic radius. The appearance of ¢ in Egs. (2) insinuates the possibility
to include it in the computation process as a variable, enabling different options for the
calibration process. Since Eqs. (2) are nonlinear, they are linearized and solved with the
Newton-Raphson iterative algorithm. The linearized equations are

—~C-AZ -D-AQ +A-AZ_ +B-AQ, =G,
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where AZ is the water level increment computed as AZ=7""-7", A0=0"""-0" is the
discharge increment, and 4, B, C, D, G and 4, B', C', D', G' are coefficients that consist
of variables known from the previous iteration or the previous time step. Employing the
Thomas (double-sweep) algorithm, results in equations

AQH—I = Ei+] ) AZ:‘H + E+1’ AZ, = Li ) AZm + Mi ’ AQH—I + Ni’ (5)

that can be written for each computational point. Coefficients £ and F in Eq. (6),
determine the influence of the computational point on the solution, while coefficients L,
M and N, given by Eq. (11), present the influence of the computational reach between
two subsequent computational points on the solution.
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Equations (6) are complemented with the boundary condition equation
$-AZ+n-AQ=¢ (7

to form a system of equations. Since this work considers only subcritical flow, boundary
conditions are needed on both ends of the computational domain. Using the universal
form of the boundary condition Eq. (7), both upstream and downstream boundary
condition equations can be obtained. Coefficients &, # and { are known coefficients that
depend on the selected boundary condition. The upstream boundary condition is known
discharge through time for which the coefficients in Eqs. (7) and (6) are given as

n+ m n+ gu? us
gus = O’ nus = 1’ é/ux = qu (t 1) - Ql 1’ El = _—’ FI = _A’ (8)
77us nus

where upper index m marks the value in previous iteration in the Newton-Raphson
algorithm. The downstream boundary condition is known water level through time, and
the corresponding coefficients are not required since 4Z; can be computed
straightforward from equation

Az, =7, (")-"2". )

Equations (5) and (7) form a system that is solved with the Thomas algorithm. The
computation now boils down to computing the unknown values of discharge and water
level increments using Eqs. (5). The developed model also incorporates the possibility of
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dam modeling as an internal boundary condition between computational points i and
i+1, which results in including equations

Q[nn _ le ’ Z[nn _ Z(t’m )’ (10)

in the aforementioned system of equations. Equations (10) are the continuity equation,
suggesting the equality of discharges upstream and downstream of the dam, and the
known water level upstream of the dam. The matching coefficients are

A=0, B=1, C=0, D=0, G = mQ»HI_mQ;H-I’

i+l

’ ! ' ' ' +1 m +1 (ll)
A=1, B'=0, C'=0, D=0, G=2z(")-"2""

Since the developed model is capable of modeling a looped river network, instead of
Egs. (5), Egs. (12) need to be used.

AQiH = Ei+l ) AZiH + EH + Hi+1 ’ AZl 2 AQI = Ei'+l ’ AZ:’H + F:J,rl + Hi'+l ’ AZl : (12)

Equations (12) give the 40 at any computational point as a function of 4Z in that point
and the first point of the considered reach (Fig. 2), and the 4Q in the first computational
point of the considered reach as a function of the A4Z in the i-th and the first
computational point. Coefticients £ and F,, for all the sequential computational points are
determined using Egs. (6), while the remaining coefficients are

Di .Hi Ei,+l = E;'(Mi .Ei+l +Li)’

"B-M-(D-E+C) (13)
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computational
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Figure 1. Looped network

Due to their recursive character, coefficients £ and F and H must be initialized. These
expressions can be obtained from Eqgs. (4), when applied to the computational reach
between points i=/ and =2 to give
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A looped river network consists of multiple links connected to computational nodes #;,
j=1,...J (Fig. 2), hence two additional equations are needed. The equation used at node
n;, where multiple links marked 2=1,2,... 4; are connected, is the continuity equation

Z m+lQ:+l — O’ (15)
=1

where /; is the total number of links connected to the node. Equation (16) equalizes the
free surface 4Z for the first or last points of all links connected to the same node.

AZ,  =NZ

The continuity Eq. (15) is linearized and implemented on all nodes. As a consequence of
the linearization, 4Q appear in these continuity equations, and they are substituted with
(12). Finally employing the principle given by (16) gives a system of linear equations,
with unknown 4Z in all nodes, that are computed by inverting the matrix

=.=AZ,, =AZ, (16)

=2

a, a, e alj ©oa, " b1
a4, a4, oa, o ay, AZ”: bz
= R (17)
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— J

where a and b are known coefficients, index »; is the node for which the equation is
written, and j=/,....J shows the node corresponding to the considered 4Z,;, where n;
denotes the total number of nodes. After acquiring the 4Z in all nodes, using Egs. (12)
gives the 4Q, while Eq. (5) gives the 4Z in all computational points.

4. CONCLUSION

A 1-D numerical model for simulating flow in a looped river network implementing the
de Saint-Venant equations was developed. The governing equations, along with the
modeling concept and a solution acquiring procedure for an arbitrary looped river
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network, are given in Sections 2 and 3. Equations (2) suggest the ability of the developed
model to allow the change of the Strickler’s coefficient through the computation. For
future references, the developed model should undergo a series of schematic and real life
situation simulations in order to determine its accuracy and validity.
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KAJIMBPAIINJA U BEPUDOUKAIINJA TUHUIJCKOI'
MOJAEJIA TEUEIBA Y MPEKU OTBOPEHUX
TOKOBA

Pezume: Osaj pao daje onuc paseoja MuUHUjCKO2 MOOeNa mederbd y Mpedict OMBOPeHUX
moKoea ca OpaHoM Kao YHYMpauireum ecpanudnum ycioeom. Ilonasehu o0 de Saint-
Venant-osux jeomauuna xoje cy ouckpemu3zosare npumenom Preissmann-oge uieme,
jeonauune cy nuneapuszosate u peuiasane komounosarsem Newton-Raphson-oee memoode
u Thomas-osoe ancopumma. Kiacuune jeonauune xoje ce xopucme npu MoOeaucarby
JUHUJCKO2 meyervd, ¢y 0ONnyreHe 000AmHUM jeOHAuUHAMa Koje Cy HeonXxooHe NPUiuKom
MoOdenucara meyersa y CLOHCEHUM CUCIMeMUMA OMBOPEHUX MOKO8A.

Kawyune peuu: Jlunujcku Hymepuuku Mooen, Mpeca OmeopeHux moxkosa
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