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Summary: This paper considers the application of a nonlinear model of a dynamic shock
absorber in building structures. The considered dynamic shock absorber forms a strained
elastic rope with a concentrated mass on it. This dynamic shock absorber is structurally
very simple and can be easily installed on various types of structures such as e.g.
platforms, metal structures and other structures. The main advantage of such a dynamic
shock absorber is the possibility to achieve its essential dynamic characteristics with the
prestressing of the elastic rope (cable). The paper analytically and numerically considers
the behavior of a model of a given structure that is exposed to different types of dynamic
loading.
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1. INTRODUCTION

Dynamic shock absorber or Tuned mass damper (TMD) is one of the ways to reduce
unwanted oscillatory movements in engineering systems. A well-developed theory is an
advantage of application. It should be emphasized that in terms of a well-known theory,
we mean the theory of linear oscillatory systems. Linear theory implies, above all, small
displacements, as well as a linear connection in the constitutive relation of the materials
from which the structures are made.

In structures that are important for a civil engineer, these conditions are met in a large
number of practical cases. The dynamic shock absorber is a special oscillatory subsystem
with its dynamic characteristics. As such, in order for the preliminary dynamic analysis of
the structure on which the TMD dynamic damper is mounted to be in the linear domain,
it is necessary for the TMD itself to be a linear oscillator. This imposes certain restrictions
on the designer.

Namely, the goal is that under a given dynamic load to which the basic structure is
exposed, the movement of its elements will be as small as possible. This is possible if, on
the other hand, the movement of the TMD is also small. As is known, the oscillatory
motion of TMD can significantly reduce the amplitude of the oscillatory motion of the
elements of the basic structure. In this regard, it is desirable that the movement of the TMD
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be as much as necessary to achieve the desired effect on the basic structure. However, as
previously mentioned, the amplitudes of motion of the TMD elements need to be within
certain limits in order for the linear theory to be applicable. In linear theory, the mass and
stiffness of TMD completely define its dynamic characteristics, i.e. the frequency of
external coercion to be amortized. Here are some well-known examples of the application
of TMD in building structures, such as Taipei 101 or John Hancock tower.

The application of nonlinear TMD in the basic structure, which is still in the linear field,
is increasingly attracting the attention of researchers and engineers. With such application,
in addition to mass and stiffness, TMD amplitudes are also important. In this way, greater
possibilities and coverage of a larger frequency spectrum are provided.

On the other hand, the area of nonlinear oscillations is still often a great unknown because,
unlike the linear one, it is far less developed. Also, what is valid in linear theory will not
be valid in nonlinear oscillatory systems. For example, a typical problem is the method of
superposition, which is not valid in nonlinear theory.

This paper will present a part of the research that represents a further continuation of the
work [1]. The aim is to show the possibility of applying a single TMD, which is a simple
construction, to reduce unwanted vibrations in an engineering structure. Using the
analytical analysis introduced in [1], a part of extensive numerical experiments is
presented here. It will be shown that the nonlinearity that naturally exists in the introduced
TMD can have a beneficial effect on the functioning of the TMD.

2. MECHANICAL MODEL

The structure, Figure 1, is considered to be a platform set on four vertical colums. It will
be assumed that the total mass of the structure M is concentrated in the horizontal platform
itself, while the masses of the columns will be neglected. It is also assumed that the
platform is rigid and that the columns are slender and elastic with pre-known
characteristics. The vertical elements are clamped to the base. As for the connection of the
columns with the platform, two types of connection will be considered: 1. clamping, 2.
cylindrical joint.
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Figure 1.

A TMD is placed on the platform, which consists of a tightened wire (cable) whose ends
are attached to the platform itself. The wire is passed through a body of mass m, which
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can move along a horizontal guide that is placed on the platform itself. It will be assumed
that the dimensions of the body are much smaller than the total length of the cable.

In order to consider the oscillatory motion of the structure from Figure 1, an appropriate
mechanical model is introduced, which is shown in Figure 2.
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Figure 2.

The presented mechanical model (Figure 2) consists of a discrete system of two
concentrated masses so that it is a system of two degrees of freedom of movement (2DOF).
The generalized coordinates that define the motion of the masses M and m are denoted by
x; and x, respectively, and they are measured from the stable equilibrium positions of
the observed masses. The constant k; reflects the rigidity of the elastic vertical elements
on which the platform stands. The constants k, and k5 describe the stiffness of a taut cable,
where k, represents the stiffness of the linear part, while k; will appear in the nonlinear
part of the assumed model of the restitution force of a taut cable in the form of

FT2 = szlz + k3Alg (1)

where Al, is the deformation of the second spring in Figure 2, while for degree a holds
a € R*.

The TMD restitution force model represented by expression (1) was adopted on the basis
of experimental research presented in [2]. By adopting suitable values of degree a, it is
possible to approximate with the desired accuracy the relationship between force and
displacement of a real system. It should be emphasized that model (1) is an extension of
the so-called purely nonlinear restitution forces (pure nonlinear), which has occupied the
attention of researchers in the previous two decades [3]. For the restitution force of the
basic system (platform with elastic columns) the linear form is adopted in accordance with
Hooke's law:

F. = kAl (2

where the coefficient k; is represented by the expression (3):
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Expression (3a) represents the flexural stiffness of four elastic vertical elements clamped
at both ends using an analogy with series-connected springs. In case the vertical elements
are clamped at one end and with cylindrical joint at the other end, the corresponding
stiffness is given by expression (3b). The reason for taking into account these two methods
of bonding is in considering their influence on the dynamic behavior of the structure under
a given time-varying load. It is of interest to establish the interrelationship between the
stiffness of the basic structure and the stiffness of the TMD and the influence of this
connection on the reduction of unwanted vibrations of the basic system.

3. MATHEMATICAL MODEL

The mathematical model of the oscillatory system in Figure 2 consists of a system of two
coupled differential equations that can be represented in a concise form with the following
matrix equation:

[M]{x} + [CHx} + [K]{x} + [KT1{E} = {F(©)} 4)

The following notations are introduced in expression (4): [M] = [I(l;l Y(:l] - mass matrix;

_ k1 + k2 _k2
[c1=| —k, Ky

- stiffness matrix of the nonlinear part

—c ] - stiffness matrix of the
2

_CCZ] - damping matrix; [K] = [
2
ks 0

of the restitution force; {¥} = {xl} - acceleration vector; {x} = {xl} - velocity vector,
1 2

linear part of the restitution force; [K*] = [

X
{x} = {x;} - displacement vector; {F(t)} = {Fl(gt)} - vector of external time-varying

actions. Value ¢ is denoted by x; — x,. The damping in the observed system is modeled
with viscous friction forces. The time-varying load is adopted to act on the mass M.
The external time-varying load can be, as suggested in [1], modeled as follows:

Fy(t) = Fyocn®(Qt, m) (5)

where cn denotes the Jacobi elliptic function whose moduo is m. Namely, Jacobi elliptic
functions are two-parameter functions, which as such enable modeling of different types
of loads by choosing suitable values for () and parameter m. It should also be emphasized
that, for example, the harmonic functions sin and cos are only special cases of Jacobi
elliptic functions, and as such are contained in the mathematical model defined by the
expression (5)

As it is known, in case that [K*] = 0, it is a linear system. The basic system (platform with
vertical elements) is linear, and its own (natural) circular frequency of undamped
oscillations is easily determined as w, = /k;/M. By adding TMD, the system has 2SSK

(2DOF), two own circular frequencies, as well as two basic oscillation modes. In the case
of linear TMD, a well-known theory allows the determination of the stated quantities.
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However, in the case of nonlinear TMD, the analysis is much more complex. Analytical
consideration of this problem goes beyond the scope of this paper, so that only the part
that arose as a result of extensive numerical analysis will be presented here.

4. NUMERICAL ANALYSIS

A system with the following parameters is observed: M = 1000kg, m = 90kg, k, =
2000 kN/m, k, = 50 kN/m, k3 = 100 kN/m,a = 2,¢c; =4 kNs/mandc; = 2 kNs/
m. In order to consider only forced oscillations, zero initial conditions are adopted. The
parameters introduced in this way correspond to a typical construction whose model is
shown in Figure 1 for the standard characteristics of vertical elements as well as the two
mentioned methods of bonding. In addition, the TMD parameters are consistent with the
experimental studies presented in [2].

A harmonic excitation whose amplitude is F, = 10kN will be considered. Figure 3 shows
the case of resonance of a basic system without TMD, when the excitation frequency () is
equal to its own circular frequency.

Figure 3. Basic system resonance without TMD

Figure 4 shows the movement of the basic system (defined by the coordinate x;) when the
TMD is placed on it. In this case, only the linear part of the restitution force TMD was
taken, i.e., it was assumed to be k3 = 0. Numerical integration was performed for the case
of a lower natural circular frequency now of a system with 2SSK. It can be noticed (above
enlarged image) that the amplitudes of the basic system are now 60% lower.
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Figure 4. Time history x4 (t) for the case of linear TMD
Figure 5 shows the movement of the basic structure when the nonlinearity of TMD is taken

into account and where the nonlinear degree of restitution force is assumed to be 2. It can
be noticed that in this case the maximum amplitudes are 10 times smaller.
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Figure 5. Time history x4 (t) for the case of nonlinear TMD
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5. CONCLUSION

The paper presents a case of applying a TMD to reduce unwanted vibrations of a model
of a real engineering structure. The introduced TMD is simple construction, but whose
dynamic behavior is characterized by pronounced nonlinearity. Numerical experiments
indicate that taking into account these nonlinearities can significantly improve the
performance of TMD. A significant advantage of this TMD is that with the desired
prestressing of the cable, the characteristics of the TMD itself are affected.
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O JEAHOM HEJIMHEAPHOM MOJIEJY
AAUHAMHNYKOI' AMOPTU3EPA Y
KOHCTPYKIIMJAMA

Peszume: Y oeom pady ce pasmampa NpUMeHa HeNUHeapHo2 MOo0end OUHAMUUKOZ
amopmusepa y epahesunckum KoHcmpykyujama. Pazmampanu OuHamuuku amopmusep
YUHU 3A4MESHYMO eNacCmMUuyHO  Ydice €A KOHYEHMPUCAHOM Mmacom Ha remy. Osakas
OUHAMUYKU aAMOpMU3EP je KOHCMPYKMUBHO 6PN0 jeOHOCMABAH U MOXdce Oumu J1aKo
nocmaemen Ha pasHe mMunoge KOHCMpYKYuja Kao wmo cy Hn. niamgopme,memante
Koucmpykyuje u Opyee cmpykmype. OcHOBHA NPEOHOCH 08AK602 OUHAMUYKOR
amopmusepa je mozyhnocm 0a ce mwe2oge 6umme OUHAMUYKE KAPAKMEPUCTIUKE NOCMUSHY
ca npedHanpesarem eracmuune scuye (cajne).

YV paoy ce ananumuuku u nymepuuxu pazmampa nonawiaree mMooeia oame CmpyKmype
KOja je uznodcena pasnudumum munosuma OuHamuixkoz onmepeharve.

Kwyune peuu: ounamuyku amopmusep, KOHCmpyKyuje
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