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Summary: Problems involving contact are of great importance in industry related to

mechanical and civil engineering, but also in biomechanics and other applications. The

contact interaction between surfaces in a bolted splice connection joint or area through

which tire interacts with the road is not known a priori, leading to a nonlinear boundary

value problem. Due to the rapid improvement of modern computer technology, today one

can apply the tools of computational mechanics to analyze contact problems with limited

accuracy, depending on design requirements. However, even now most of the standard

finite element software is not fully capable of solving contact problems, including friction,

using robust algorithms. The aim of this paper is to present some basic concepts of Contact

Mechanics. To illustrate the difficulties arising in computational contact mechanics,

Newton-Raphson scheme was used to solve simple 1D contact problem using penalty

method.
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1. INTRODUCTION

Particularly demanding nonlinear problem to analyze is the contact between two or more
bodies [1-3]. Contact problems can range from simple approximations of frictionless
contact with small displacements to frictional contact with large displacements, large
rotations and large strains. The nonlinearity of the analysis with contact included does not
depend only on material and geometrical nonlinearity, which is usually considered for
deformable bodies, but from contact conditions which are now included in the equations
of motion. Without detailed derivation, strong form of the contact problem in the tensor
notation can be stated as follows:

(1)

IN

I 20, on

0! Tnln =0 al F.

where: 12 represents volume of the body, F: is a surface where surface tractions are

]
prescribes, F, is a surface where displacements are prescribed, F; is an unknown contact
surface. g, is a normal gap between bodies and &, is normal contact pressure, & with the
double underscore is Cauchy stress tensor, # is unit normal vector to the surface of the
body, fi: is body force vector, ey are prescribed tractions to the surface of the body g are
prescribed displacements and V is the nabla operator. Double underscore in expression (1)
represents tensor of the 2" rank, while one underscore represents vectors. Last set of
expressions in (1) is known as Hertz - Signorini — Moreau conditions in contact mechanics
literature or Karush—Kuhn-Tucker (KKT) conditions in mathematical optimization..

2. WEAK FORM OF CONTACT PROBLEM

In this section, brief introduction to discretization of the weak form with special attention
to the contact integral will be presented. In order to arrive at a weak form we start from
momentum balance of a strong form i.e. first equation of a system given in (1) and take a
dot product with any arbitrary vector function # (test-function):

Vega+fu=0 in Q@VQ,/[V'g+E}-de:O. )
Q

If we put a constraint that 2 has C* continuity, then the first term in (2) can be integrated
by parts which yields:

/ ﬂ-g-ydf+/[fu-y-g--vyidﬂzo. (3)
a0 - Jo -

where 1 is an outward unit normal to the body surface 0Q, = is the double scalar product
and Vv is the gradient of test functions. With this procedure we removed derivative from
the stress tensor which implies that the requirement on smoothness of the stress tensor
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from strong form has been replaced by a weaker requirement of continuity & € € ° [3].
We can replace abstract test function #2_by an arbitrary test displacements also called
virtual displacements &, then weak form (3) becomes the balance of virtual work:

/ ﬂ-g-6yd[‘+/[fv-y—g--chg]dQ:O. 4
a0 - -

Ja

The stress vector # - & in (4) is not zero on surfaces: F,, F¢ and in the active contact zone
F eIy U I.;), where Iy and I, are contact surfaces of the two contacting bodies
respectively. Integral over surface 0Q can be written as a sum of integrals over different
surfaces:

/ﬂ-g-éﬂrﬂ":/ ﬂ-g-ﬁpfﬂ“cﬁ/ z-g-dzdl“(-f_ﬂr/ oo-dudl’y (5)
Jao Jro T T JTe v,

Jre,

where &y is a prescribed traction vector (Neumann boundary condition), # is a unit surface
normal at boundary surface {7y, ¥ is a unit surface normal at boundary surface I';, g is
position vector of a point on surface I;; (master surface), T is position vector of a point on
surface I; (slave surface). Newton’s 3rd law states that at equilibrium we have:

ngdl = v gl (6)

When two bodies are in contact, these two integrals can be replaced by one integral. We
choose the surface I;; as surface over which we perform integration (master surface).

/ﬂ-g‘dprff‘d—/ ﬂ-g-dzdfﬁz:[ n-g-d(p—r)dla (7)
Jra - - - - -

JTe2 JTa

where: 7 — p = g(p.I.;) is a gap function representing relative position of a point  to
p. In our case, we concern ourselves with small deformations with only normal
components of the displacements as independent variables. In that case we can write
function g as follows: § —* g, and g, is normal projection of a gap function. We can
now write weak form, including the contact integral as follows:

Ter

fg- ‘ngdﬂ%/ ,09,dl 4 =/ oq - dudl + /L dud) (8)
Q T Ja

3. DISCRETIZATION OF CONTACT INTEGRAL, NODE-TO-NODE
APPROACH

Discretization of the weak form using the isoparametric approach is one of the widely used
methods in finite element calculations. By isoparametric, it is meant that same functions
describing displacement field are used to describe geometry. Since we are going to solve
simple contact problem in 1D domain, reader should consult relevant literature regarding
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weak form discretization [2], [3]. After discretization of the weak form, we arrive at next
expression:

[Klw+ W, =R (€))

where: [K] represents a stiffness matrix of assembled structural system, &W; is contact
integral representing contact forces and £ is a vector of externally applied tractions and
volume forces. Vector of contact forces W, depends on the resolution method. In this
paper, we are going to use penalty method as a resolution method for calculating contact
contribution to the global equilibrium. Consider the problem shown in Figure 1:

m

u h §
e 2
—_—

Figure 1. Point mass supported by a spring and a penalty spring due to the penalty
term

This 1D system is represented by a mass 11 suspended on a spring with stiffness k. If we
neglect ground constraint, we can write a functional for a mass-spring system in
gravitational field as follows:

1. .
L(u) = §k’u2 — mgu (10)

where: L{u) is energy functional of the system, k is a spring stiffness, u is displacement
of a point mass, mg is gravitational force exerted upon mass m.

If we consider constraint which states that mass m cannot be displaced below certain level
f, we can rewrite energy functional by adding a penalty term as follows [1]:

L{u) = %kug —mgu + %e[c(u)]? (11)

As can be seen in Figure 1, the penalty parameter £ can be interpreted as a spring stiffness
in the contact interface between point mass and rigid support. This is due to the fact that
the energy of the penalty term has the same structure as the potential energy of a simple
spring.

This equation will be solved using variational principle which states that solution to
equilibrium equation (11) is achieved if first variation of the functional L{u), with the
assumption of contact, is equal to zero:
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oL (u) = kudu — mgdu + ec(u)du =0 (12)

which for arbitrary &u yields the solution:

~ {mg + ch)
T T kteo (13)

The value of constraint equation is then:

kh —myg
clu)=h—-u= T (14)

Since myg = kh in the case of contact, equation (14) means that a penetration of the point
mass into the rigid support occurs, which is physically equivalent to a compression of the
spring, see Figure 1. This penetration depends on the penalty parameter. One can see that
constraint equation is fulfilled only in the limit ¢ = @ = c{u} — 0. Because of this fact,
we can distinguish two limiting cases:

e & — o = clu) = 0, which means that one approaches the correct solution for
a very large penalty parameters. This means that fictitious contact spring stiftness
is very large, hence only small penetration occurs.

e £ — (0 represents the unconstrained solution, and is only valid for inactive contact
constraint. If contact occurs for a small parameter &, large penetration will occur.

The reaction force for a penalty method can be computed from (12) and is equal to:

RN = EC(U) ‘

; = k+6(i~ch—mg) (15)

Now we can turn our attention to contact integral for 1D problems of normal frictionless
contact, which takes the following form:

6”’? = / O'n(ggn dF(:l ( 1 6)
Tea

Using penalty method as a resolution of contact integral we write the normal pressure as
a product of penalty term £, and penetration gy . This leads us to:

Tp = €pln (17)

Returning to weak form, contact integral can be written as:

(SVVC == / 6ngﬂ (s.,(i’ﬂd]'—\ﬂl (] 8)
o1
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In the node-to-node contact discretization [5], Figure 2, contact is enforced trough master
and slave nodes. Let’s say that node i is the master node, and node j is the slave node.
Then, using previously derived expression for normal gap g, and contact stresses &y, we
can write the following expression for contact integral in current configuration:

oW, = Z en(r; — x;) (0 — ;) (19)
=1

where we dropped an integral over unknown surface and replaced it with the sum over all
contacting nodes =. This can be done because in Node-to-Node contact approach,
unknown surface is replaced by two contacting nodes, master and slave respectively.

Figure 2. Node-to-Node contact element

Displaced configuration can be written using reference configuration as:
=X, +u; (20)

Now we can rewrite expression for contact integral using reference configuration and
displacement as:

enl Xi + 1w — X —uy) (0w — 0uy) = en (s — uy — 945) (0 — duy) 21
where g;; represents initial gap between contacting nodes ¢ and j. Since variations of

displacements can be arbitrary, we can rewrite previous expression in matrix notation:

. { 11 - 1} {?,..i] + &, {_giﬂ] — 6W, = [Krlu+ R, (22)
- (3]

gl]

where: [K;] represents tangent stiffness or contact matrix, f, is residual vector.

4. SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS IN
STATICS

System of nonlinear algebraic equations can be written in its balance form assuming
contact as:
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F(u,R) = [Klu+ ([Krlu+ R,) —R=0 (23)

This system can be solved using Newton-Raphson iterative procedure. Newton-Raphson
procedure is founded on linear approximation of a system at one point in time and
marching forward in small steps. Results are accepted once the equilibrium of a system
reaches certain “small” value. Let’s assume that we have solved equations and reached
converged solution for an 7 point in time F (u®, R™} = 0. We are now looking for solution
at next point 1 + 1:

F(En+1. R'nle) =0 (24)

This system of equations can be expanded in Taylor series around previously known state
u" as:

= K+ (Kol + R2) — R0 4 (K] + (K)ot &)

{F(ﬁ” = A R = Bt R 4 2 Ay 4 r(0)
where: (') represents error of the linear approximation. Last expression in (25) should
be equal to zero and can be written as:

Fhy o+ Fle + By — B4 KA =0 (26)
where: Ffi: represents vector of internal forces at time n, Ffiz. is a vector of contact forces
at time 7, RT is residual vector due to contact at time 1, R™"** is a load vector at next time
step n + 1, [Kf] is contact tangent matrix at current time 7.

Rearranging terms in (26), we can set up procedure for iterative solution:

outofbaIanccforcevcctorARi"’1
'

[KF)Augt, = R = (B + Fog) = R, o
n+1 n+1 n+1
Ui = Uy + Augy
H?o_‘)—l — H‘n

Since we are dealing with nonlinear analysis, calculation of internal forces is not
straightforward and needs to be done with care. Best practice would be to update them
according to displacements, meaning that if internal forces at iteration i are equal to
F; = Fiyy + Fiype, then Fi*' = Fi** £ AF, where AF can be calculated from tangent
stiffness matrix [K7] and increment in displacements Auf*?. Tteration continues until:

[ Auf | < el (28)
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i
where |I-l is Euclidean norm (i.e. l=ll = {E xf]* ) and £ is an error tolerance set as some
“small” value.

5. NUMERICAL EXAMPLE

In this example, simple Node-to-Node contact between two truss elements was tested
using Newton-Raphson iterative procedure.

| F'pl § a— |

——.
L & ® @
R
H2 H:.‘ u 4 ”T
31

Figure 3. Truss structure with initial gap

Structure consists of four linear truss elements that are supported on the both sides. Initial
gap g is assumed between the 3rd and 4th element (Figure 3). Force F is applied to the
second degree of freedom of the system. Since we are dealing with nonlinear problem, we
apply force F in increments. One can see that before the gap has closed, we are actually
solving a linear system that consists of two rods that are not interacting. Once we
overcome the gap between rods, normal contact force arises and resists penetration of the
rods into each other. When the system is in contact, we are adding penalty stiffness to the
structural stiffness matrix and residual vector to the force vector and iterate for
equilibrium. Analysis parameters:

EA=1000, I=1, g=001, F=20, AF=1, &, =[10° =10

Force vs. displacement Contact pressure vs. applied force
0.02 A 0
— —gn =102
0.018 en=10 P
—e-—en=10*
0.016 47— —en=10°
- . 2
F a,.e"
0.014 o o
e o o -3
7 - B 5
5 0.012 & = @
o 001 o
=z T
7 £-5
5 0.008 5
O
0.006
0.004 7
0.002 -8
0 -8
o 2 4 [} 8 10 12 14 16 18 20 [ 2 4 [:} 8 10 12 14 16 18 20
Applied force Applied force

Figure 4. Results of Node-to-Node approach in static analysis
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On Figure 4. two graphs that represent displacement and contact pressure with respect to
the applied load to the system are shown. On the left graph, it can be seen how system
stiffens once contact is achieved. Besides that, one can see how increase in penalty
stiffness changes the nature of solution where for higher values of penalty parameter
solution converges to the exact solution [1].

6. CONCLUSION

In this paper, we have shown some basic principles of contact mechanics. Strong form of
contact problem was presented as well as weak form that is suitable for numerical
approximation of the system of equations. Emphasis was placed on the weak form, i.e.
contact integral of the virtual work. Using penalty resolution method, contact integral was
discretized using Node-to-Node contact element and iterative Newton-Raphson method
was set up as a method for the solution of the nonlinear system of equations. At the end,
simple numerical example was solved and it was shown how penalty parameter affects the
solution of the contact problem.
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PENALTY -METOJA 3A 11 ITPOBJIEM /IBA LITAIIA
CA OCHOBHUM KOHHLEIITUMA KOHTAKTHE
MEXAHHUKE KOHTAKTA BE3 TPEIHA

Pezume: I[lpobnemamuxa KoHmaxma uzspa 6enuxy yiaocy Kako y MAWUHCKOj U
epalesunckoj UHOyCmMupuju mako u y OuOMexamuyu u MHOSUM OpYeUM HOBUMA.
Konmaxmua unmepaxyuja usmelhy nospcuna sujuanux éesa uau usmely eyme mouxka u
noonoce Huje anpuopu NO3HAmMA, Wmo 600U 00 HeIUHeapHO2 SPAHUYHOZ YCI08d Y
Mexanuyu — deopmabunnoz mujena. Yemed Genuxoe HANpemKa  NPOpAUYHCKe
mexHono2uje, 0anac je mocyhe Kopucmumu aiam Hymepuuke MeXanuke npu aHamusu
KOHmaxkmue unmepaxyuje. Mehymum, eehiuna cmanoapouux cogpmeepckux naKkema Hucy
¥ MoeyhHOCmuU y NOMUYHOCMU 0a CUMYAUPQ]Y KOHMAKMHY UHMePAKyujy, VKabyuyjvhu
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mperve. L{uw 0602 paoa je oa npedcmasu ocHoge mexanuxke Koumaxma. Ja 6u npuxaszanu
nomewikohie xKoje ce nojasmyjy y Hymepuukoj ananusu konmaxkma, wema Ebymun-Pancona
je npumujersana 'y pjewasary 1J] xommaxmnoz npobiema nemaimy MemoooM.
IIpedcmasmeno je nopelere pesyimama y 3a8UCHOCHU 00 NEHEAMY Napamempa.

K/bylmepetm: Koumaxmmua mexanuxa, neHaﬂmy-/wemoda, Koumaxkm 6e3 mperoa
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