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Summary: For designing unrestrained steel beams in accordance with EN 1993-1-1 it is
necessary to know the value of elastic critical lateral torsional buckling moment . The
aim of this paper is to present different methods for calculating elastic critical lateral
torsional buckling moment and analysed them. Methods proposed by Trahair, Clark and
Hill and Balaz and Kolekova are discussed and examined through numerical example.
The obtained results have shown no significant differences between analysed methods in
the case of simple beam under uniform distributed load and concentrated point load at
mid span. Further more detailed investigation is needed for more complex cases.
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1. INTRODUCTION

When designing long steel beams which are not continuously lateral restrained the
possibility of lateral torsional buckling (LTB) should be checked.

In Eurocode 3 (EN 1993-1-1) [6] section 6.3.2.1 rules are given on how this verification
should be carried out. In clause 6.3.2.1(1) it is stated that the verification against lateral
torsional buckling should be performed using equation 6.54 as follows:

M

b,Rd

where Mgq is the design bending moment
M,rd is the design buckling resistance moment.

Design buckling resistance moment Mprq Of laterally unrestrained beam should be
calculated using equation 6.55 from [6].
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xL7 is a reduction factor which allows the effect of lateral torsional buckling. Reduction
factor y.t is given by equation 6.56 in [6].

1
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The value of y.t depends on the factor @t that is a function of the imperfection factor
ot and the non-dimensional lateral torsional slenderness Air. The values for
imperfection factor ai7 are given in Table 6.3 in [6] or in the relevant National annex.
Non-dimensional lateral torsional slenderness A.t is given by the following equation:

— Wf
Aur = —l\; Y 4)
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where M is the elastic critical lateral torsional buckling moment.

Therefore for the calculation of the non-dimensional lateral torsional slenderness 4.t and
thereby for the design buckling resistance moment Mprq the value for Mg must be
known.

However Eurocode 3 does not give equation for calculating M, it is only stated that the
M should be calculated on the basis of gross cross sectional properties and that the
actual loading conditions and the lateral restraints should be taken into account. Thus it
is up to the designer to decide how to calculate M.

The aim of this paper is to present an overview of the existing methods for calculating
elastic critical lateral torsional buckling moment and analysed them.

2. SIMPLE BEAM UNDER UNIFORM BENDING

The equation for elastic critical lateral torsional buckling moment for simple beam under
uniform bending was first derived by Timoshenko [1].

| —

Figure 1. Simple beam under uniform bending
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He analysed equilibrium equations of sligtly lateraly torsional buckled beam and
calculated which value of bending moment will cause such form of deformation. He
derived the folowing equation for elastic critical lateral torsional buckling moment.

®)

where I, is the second moment of area about z-z axis
lw is the warping constant
It is the St. Venant torsional constant.

This equation applies only to simple beams under uniform bending.

3. BEAMS UNDER VARIOUS LOADING CONDITIONS

The case of simple beam under uniform bending is not very common in practice but
deriving exact equations for M for different loading conditions is coupled with
mathematical difficulties.

Therefor Trahair [2] proposed approximate solutions for different loading conditions in
form of the following equation:

M = amMchimple beam (6)

Various loading conditions are taken into account by the factor am. The values for the
o factor are presented in the Table 1.
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Table 1. Values for factor am
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The equation (6) does not take into account the point of load application (it is assumed
that the loading acts at the shear center) and it is only valid for doubly symmetric cross
sections.

The effect of the point of the load application can be taken into account by multiplying
equation (6) with the factor y given by the following equation:

2
0,4¢,,y 0,4,y
= [1+ M79 1+ M7q 7
4 [McEr/Ncrzj McEr/Ncr,z ( )

where yq is the distance from the shear center of the cross section to the point of the
load application (negative if the load is acting above the shear center, positive

otherwise)
_ m’El,

crz IZ

General equation for the elastic critical lateral torsional buckling moment of doubly
symmetric as well as mono-symmetric cross sections under arbitrary loading conditions
was first derived by Clark and Hill [4]. They also analysed fixed end restraints that was
not the case with the before mentioned methods. The equation is as follows:

0,5

2ZEL ||k Y1 (kL)?GI

where C; is the coefficient that takes into account the shape of the bending moment

diagram

C. is the coefficient that takes into account the point of the load application

Cs is coefficient that takes into account the type of the cross section

z; is the factor of the cross section asymmetry

Z4 is the distance between the shear center and point of load application
k, kw are the effective length factors (k refers to rotation restrictions and ky
refers to warping restrictions at end sections).

The values for Cy, Cy, and Cs are given in Table 2.

The equation proposed by Clark and Hill together with the values for coefficients Cy, Cs,
and Cz was included in the draft version of EN 1993-1-1 but not in the final one.
Possible reasons for excluding the equation (8) from the final version of EN 1993-1-1
could be the works of Balaz and Kolekova [5], [7]. They argued that the use of
coefficients Cq, Cy, and C3 given in the Table 2 may lead in many cases to wrong values
of the elastic critical lateral torsional buckling moment.

Their claims have been supported by Fruchtengarten [8] who in his master thesis
compared different equations for calculating the elastic critical lateral torsional buckling
moment with the results of the finite element program PEFSYS. The proposal of Balaz
and Kolekova given in equation (9) provided the closest results to PEFSYS.
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Loading conditions Bending moment Factor k Coefficients
diagram Cl 2 3
¥=+1
1,0 L.000 1,000
0.3 1.000 1.144
¥=+ 3/4
1.0 1,141 0,998
0.7 L2 | — 1,565
0,5 1,305 2,283
¥=4+1
” 1.0 1,323 0,992
0.7 1,473 1,556
0.3 1514 2271
= +
=i 1,0 1.563 0.977
0,7 L730 | — 1,531
03 1.788 2235
¥=10
¥ W 1.0 1,879 0,939
( ) HII]]]]D]]]II&. 03 i n e
0,5 2,150 2,150
==t 1.0 2.281 0.855
D]Il:u]]]:l‘:m:g-__=I 0.7 2538 1,340
0.3 2,609 1.957
¥==1/2
/ 1,0 2,704 0,676
[ 0.7 3.009 1,059
0.3 3.093 1.546
¥= - 3/4
1.0 2,927 0,366
e 0,7 3,009 — | 0573
0,5 3,003 0,837
¥= 1
1,0 2732 0,000
e 0.7 2.063 — | 0.000
0.3 3.149 0.000
Loading conditi Bendi Factor & Cocllicients
l|ii|Eri1||| 1 2 3
W
 — VIIID]]I[D]J? 1.0 L1532 | 0459 | 0525
0.5 0,972 0,304 0,980
W
a—g L@WA L0 1285 | 1362 | 0,753
0.3 0712 | 0552 | 1,070
F
W’ 10 1365 | 0353 | 1730
05 1010 0,432 3,050
F
é—"—E [Preepyimmet] 10 1565 | 1267 | 2.640
0.5 0938 | 0,715 | 4.800
G
W L0 L6 | 0430 1120
i I il 0.5 1010 | 0410 | 189
La 1L ala |

Table 2. Values for Cy, C,, and Cs
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Equations (8) and (9) are identical, the only difference is in the values of coefficients C,
C,, and Cs. While calculating C; coefficient Balaz and Kolekova have taken also into
consideration torsional properties of the cross section. So there are two values of
coefficient C1, C10 and Cy 1, that correspond to kwt = 0 and kw: = 1 respectively.

The values for coefficients C10, C11, Cz, and Cs are given in Table 3. Coefficient C;
should be calculated using following equation.

C1=C10+ (C1,1 — C1,0)kwt < C11 but C1 = Cy,0 for kwt = 0 and C1 = Cy,1 for kwt > 1 9)
Loading and Bending Values of factors
support moment T
conditions. diagram. 2 G ) Cy
. k.-
Cross-scction End moment x vy =1 —— 0T, 00 wr=1
menosymmetry ratio . a0 | oy ’ v S P S =i =0 eT
a0 " " i * - > -
Bactor yg M- g cT | eIeT | eTel | ¢
-side  -side > bl
Y — 1,0 | 1,000 | 1,000 1,000
m]m 0,71 | 1,016 | 1,100 1025 1,000
f‘f M, 0.7k | 1016 | 1,100 1,025 1,000
2 i L E‘) 0,5 1,000 1,127 1,019
N
. 1,0 | 1139 | 1,141 1,000
E=1F=1 M, w=+34
7 " o070 | 1,210 | 1,313 1,050 | 1,000
Beam Af-side: 071 | 1,109 | 1,2 1,000
+ 0,5 | 1,139 | 1,288 1,017
C | w=o0
- 1.0 | 1312 | 1320 | 1050 | 1,000
- I 0 Mm‘ V2o [ 1as0 | 1616 1,160 1,000
(. | w S i | o - "
E . 0,78 | 1,213 | 1,317 1,044}
0.5 | 1,310 | 1482 | 1,150 1,000
1.0 | 1,522 | 1,551 | 1,290 1,000
M, w=+1/4
. 0,71 | 1,853 | 2,059 | 1,600 1,260 1000
07R | 1,329 | 1467 ) 1,000
05 | 1,516 | 1,730 | 1350 | 1,000
Wi 5 L0 | 1770 | 1847 | 1470 1,000
[Dj]’ u 0,70 | 2,331 | 2,683 | 2,000 1,420 | 1,000
0,7R | 1,453 | 1,502 1,000
M i 05 | 1,783 | 2,027 | 1500 1,000
L ..'-_AL < 1,0 | 2047 | 2207 1,65 1,000 11,850
e N M, w=-114
F oL E o M 0.7L | 2.827 | 3322 2,40 1,550 0,850 -0,30
A 0,7R | 1,882 | 1,748 1,38 0,850 0,70 0,20
Beam M-side: 0,5 | 2,004 | 2341 1,78 1,000 0,650 0,25
P T"“f <0 M, =2 1,0 | 2381 | 2,501 135 1000 13 - 1, 24 0,70
o [m]I 0L | 3.078 | 3,399 2,70 1450 1- 1.2y, -1,18
© T w=>0 07k | 1,711 | 1,897 145 0,750 0,9- 0,75, 0,53
et 0.5 | 2230 | 2,579 2,00 0,950 0.75 - @y -0,85
M, w=-3i4 | LU | 2847 | 285 2,00 1,000 0,55 -y, -145
I —1 ]j]: 0,7L | 2,592 | 2,770 2,00 0,850 | 0,23-09; 1,55
pyp =t R 07R | 1829 | 2027 | 188 0700 | 068y -107
T +1Iq 0,5 | 2,352 | 2,606 2,00 0,850 | 0,35y, 1,45
M, w=-1|L0 | 2585 | 2,733 2,00 —yr -2,00
Tre 0,71 | 1921 | 2,108 158 0,380 1,580 1,55
07R | 1,921 | 2,103 1,58 0,580 -0,380 -1,58
05 | 2223 | 2,390 188 0125 - 0Ty ~0125 -0,Tw ¢ 188
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Bucggﬁ]:;ﬂgh Values of factors

i;:‘;iilii;g and 'F"il'I G2 Cs
conditions Ry | ky | K 1 X LT T el LI | T
C'..U C].] wy = 1| -0%syp <09 we=l wem=1 09 Sy S09 we=1
11 |1 |1 ez 033 0,459 0,50 | 0,93 0,525 | 0,38
1|1 05| 1128 1231 033 0,391 0,50 | 0,93 0,806 | 0,38
1 o5 |1 [oser 0997 | 025 0,407 040 | 084 | o478 | 044
|05 |05 |07 0sm0| oas 0,310 040 | 084 | oend | 044
F 1 |1 |1 |1348 1363 052 0,553 0,42 | 1,00 0,411 0,31
wagmny (1|1 |05 1349 | 1452 | 052 0,580 0,42 | 1,00 0,666 | 0,31
- “Ul g [0 ]0s |1 [ ese | 1es7| 040 0449 | 0,42 | 080 0338 | 031
1|05 05| 1081 1067 | 040 0,437 0,42 | 080 0,516 | 0,31
s g |1 |1 |1 | ress| o0 | 033 0,431 0,39 | 0,93 0,562 | 0,39
e |1 |1 0,5 | 1030 | 1148 [ 033 0,292 0,39 | 0,93 0,878 0,39
M, 1 [os |1 o922 00| 028 0,404 0,30 | 088 0,539 0,50
|1 |05 o5 | es22 | esss| 028 0,237 0,30 | 088 0772 | 0,50

Table 3. Values for C, Cy, and Cs from [5]

The proposal of Balaz and Kolekova was included in National annexes for EN 1993-1-1
of Slovakia, Czech Republic and Austria.

Apart from above mentioned methods for calculating elastic critical lateral torsional
buckling moment various computer programs could be used to this end. The most
practical and frequently used one is LTBeam developed by CTICM.

In order to make comparison among before mentioned methods a practical numerical
example will be examined.

4. NUMERICAL EXAMPLE

Simple beam of length | = 800 cm with IPE 300 cross section is analysed. Elastic critical
lateral torsional buckling moment is determined for two most common loading cases in
practice, uniform distributed load and concentrated point load at mid span. Also two
different load positions are considered, at shear center and at the top of the compression
flange.
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Figure 2. Analysed cases
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The values for elastic critical lateral torsional buckling moment (in kNm) using before
mentioned methods are presented in Table 4.

Load case Po!nt (.)f Trahair CIarI§ and Balaz and LTBeam
application Hill Kolekova
3 Shear center 70.908 71.034 70.879 70.942
S2%
cg5= Top of
= compression 57.49 57.411 57.286 57.388
flange
E E = Shear center 84.713 85.655 85.064 85.309
£8 &
ez Top of
5 'g_ € | compression 65.995 66.330 65.873 65.448
© flange

Table 4. Results of analysis

5. CONCLUSION

In this paper different methods for calculating elastic critical lateral torsional buckling
moment are presented. The examined numerical example has shown that there is no
significant difference in values of elastic critical lateral torsional buckling moment
obtained using methods proposed by Trahair, Clark and Hill and Balaz and Kolekova as
well as program LTBeam. The method proposed by Trahir is the least time consuming
and therefor it is the easiest to use in comparison to other two methods, but its field of
application is limited. Analysed cases are the most common ones in practice whereas for
more complex cases (mono-symmetric sections) it could be expected to obtain more
significant differences. Further investigation on this subject is of great practical
importance.
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PREGLED METODA ZA ODREDIVANJE
ELASTICNOG KRITICNOG MOMENTA BTI

Pesume: Za proracun nepridrzanih Celicnih greda shodno EN 1993-1-1 neophodno je
poznavati vrijednost elasticnog kriticnog momenta bocno-torzionog izvijanja. Cilj ovog
rada je da se prikazu razlicite metode za odredivanje elasticnog kriticnog momenta
bocno-torzionog izvijanja. Metode predloZene od strane Trahair-a, Clark-a i Hill-a i
Balaz-a i Kolekov-e su razmatrane i analizirane kroz numericki primjer. Koriséenjem
razmatranih metoda nijesu dobijene znacajne razlike u rezultatima u slucajevima grede
opterecenje jednako podijeljenim opterecenjem i grede opterecene koncentrisanom silom
u sredini raspona.

Kwyune peuu: Elasticni kriticni moment bocno-torzionog izvijanja, metode proracuna,
numericki primjer
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