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Summary: Seismic analysis needs to apply a material-geometric non-linear analysis of 

steel frames with semi-rigid, eccentric and viscous beam-to-column connection for 

satisfactory steel frame response. Both nonlinearities, the geometric nonlinearity of the 

structure, and the material non-linearity of the connections are considered 

simultaneously. The flexibility of the ends of the beam is modeled using rotary springs at 

its ends with a nonlinear moment-rotation relation defined by a three-parameter model. 

The eccentricity of the connection is represented by short infinitely rigid elements. The 

viscous damping related to the relative velocity of the angle of relative rotation is 

modeled using rotary viscous dampers. For this model of the beam, a complex flexible 

matrix of stiffness of the element was introduced. Parametric analysis has determined 

the influence of connection flexibility, eccentricity, viscous damping and second order 

theory on the seismic response of the structure. The results of examples are illustrated in 

diagrams and figures. An adopted model for frame calculations can also be used to 

seismic response control of a structure through specifically added structural elements, 

such as dissipative joint connections. 
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1. INTRODUCTION 
 

Actual seismic design of steel buildings is based on analysis which demands realistic 

numerical models, needed for control of the behavior of structures due to incidental 

seismic load or for performance based seismic designs. Based on numerous studies it 

was concluded that the connections are realistically semi-rigid and that the moment-

rotation relationship at the end of the linear elements is non-linear almost in the entire 

load range generally for all types of connections (Figure 1)[1,2]. In addition to the 

established flexibility of connections, there is a greater or lesser eccentricity of 

connections, which can cause significant changes in the impact in the structure. 

Within the latest requirements in the aseismic design, the control of the behavior of 

structure, the importance of designing and installing specific structural elements has an 

important role in reducing or completely eliminating the damages of both constructive 

and nonconstructive structural elements. These elements largely accomplish significant 
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energy dissipation that is passed on to the system by the system in seismic load, and thus 

protect other structural elements from damage [3]. 

 

 
Figure 1. Relation Moment-Rotation for different type of beam-column connections[4] 

 

The subject of this paper is the seismic material-geometric non-linear analysis of steel 

frames with semi-rigid, eccentric and viscous beams-column connections. 

Considerations can also be implemented in systems for controlling the behavior of the 

structure through specifically added structural elements, such as nodal dissipative 

connections. Special attention is also paid to the effects of second-order theory, which 

can be crucial for flexible structures such as steel frame systems. In this way, the work 

includes nonlinearities, the geometric nonlinearity of the structure, and the material 

nonlinearity of the connections, which were considered simultaneously. The material 

non-linearity of the problem occurs only in the connections of the beam elements, while 

all other parts of the system are considered in the domain of elastic behavior and in this 

way a substantial rationalization and design efficiency has been achieved, which is 

applicable as such in standard engineering calculations. 

As a result of the presented numerical model of seismic analysis and the type of the 

structure behavior control, the corresponding parametric analysis carried out. 

 

 

2. BEAM ELEMENT WITH SEMI-RIGID, ECCENTRIC, VISCOUS, 

BEAM-TO-COLUMN CONNECTIONS 

 

A beam element with semi-rigid, eccentric and viscous damping beam-to-column 

connections is shown in (Figure 2). The semi-rigid (flexible) connections are modelled 

with nonlinear rotational springs at beam ends. The assumption is that the only the 

influence of bending moment on the connection deformation is considered, while the 

influences of axial and shear forces are neglected. The spring element is assumed as 

mass-less and dimensionless. The eccentricity is modelled by short infinitely stiff 

elements whose lengths are e1 and e2. The linear viscous damping at nodal connections 

are represented by dashpots acting at beam ends [5]. 
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Figure 2. a) Beam element with semi-rigid eccentric and viscous connections  

b) Assumed form of element deformation [5] 

 

Primary unknowns are the joint displacements and rotationse, while displacements and 

rotations of the beam ends are eliminated as has been shown in [5]. Consequence is that 

the number of degrees of freedom remain the same as for the standard beam element 

with fully rigid connections. The function describing vertical displacement v(x) for the 

element with flexible eccentric connections, is written in the form related to interpolation 

function matrix and nodal displacements vector: 
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where N(x) denoting the matrix of interpolation functions obtained based on the 

analytical solutions of the second order analysis equations [6], q element nodal 

displacement vector, N
~

corrected matrix of interpolation functions and G is correction 

matrix: 
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Elements of correction matrix G depends on coefficients gij and eccentricities e1 and e2. 

Coefficients gij  are the functions of nondimensional rotational stiffness in node i and 

node j (gi=EI/lki ; gj=EI/lkj). Stiffness matrix for the beam element with flexible 

eccentric connection can be obtained through the total potential energy (Eq. 3), axial, 

flexural and with aditional potentional strain energy of the springs (Us). 
 

sfa UUUU   (3) 

 

Based on these considerations of stiffness matrix of beam element can be expressed as a 

sum of three stiffness matrices: 
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sefII kkkk   (4) 

where matrix kII denoting beam stiffness matrix with the rigid connections according to 

the second-order analysis, kef  correction matrix which takes into a account the effects of 

flexibility and eccentricity and ks stiffness contribution part which depends on rotational 

stiffness of nodal springs: 
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The explicit form of matrices  G and C can be found in [5]. 

 

 

3. ELEMENT MASS AND DAMPING MATRICES 

 

Assuming that the mass density  is constant, the element consistent mass matrix m can 

be given in a form:  


V
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where )(
~

xN is the matrix of corrected shape functions defined by Eq. (1). After 

substitution of Eq. (1) into Eq. (6), the consistent element mass matrix, for the proposed 

element beam with flexible eccentric connections, can be written as sum efo mmm  , 

where: 
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In the above relations, om denotes conventional mass matrix for the beam element with 

constant cross section and efm denotes the mass correction matrix. 

 

Rotational viscous dashpots are attached at beam ends (Figure 2), and as consequence 

the total moment at each nodal connection (i=1,2) depends on term of relative rotation  

between beam end and column and term of relative angular velocity )(t as: 

 

'2,'1,)()()(  itctktM iiiii    (8) 

 

where ki and ci are rotational spring stiffness and rotational viscous damping coefficients, 

while dot over the symbols denotes differentiation with respect to time. The tangent or 

secant form of the above relation may be written if non-linear springs and dashpots are 
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considered. In the case of periodic response with circular frequency  the following 

relation between the amplitudes may be derived [7]: 
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(9) 

 

where complex flexural stiffness ki
*
 of the connection is defined as the ratio between 

moment and relative rotation amplitudes. After the elimination of relative end rotation 

vector )(tθ , the relation for end nodal forces R  transforms to: 

 

)()( tt qkR
  (10) 

 

where matrix k
*
 is a complex flexural stiffness matrix of uniform beam with flexible 

connection according to the linear or second order analysis, including both flexible and 

viscous phenomena.. 

Expanding the elements of the dynamic stiffness matrix in series with respect to the 

circular frequency  and neglecting higher terms than the third order, the following 

expansion is obtained in the decomposed form: 

 

mckk
2*   i  (11) 

 

where k is the static stiffness matrix, c the damping matrix and m the mass matrix for the 

uniform beam with flexible springs and dashpots at its ends[7]. 

 

The proposed viscous damping at beam ends causes that viscously damped system does 

not satisfy Caughey and O‟Kelly‟s condition [8]. The response of a multi-degree-of-

freedom system cannot be expressed as a linear combination of its corresponding modal 

responses. So, the system is non-classically damped and it generally has complex valued 

natural modes. It is necessary to explain physical interpretation of solutions represented 

by complex conjugate pairs of characteristic values. In order to establish the relationship 

between coefficient ci of viscous damping in joints and modal relative damping factor k 

for k mode shape, a specific procedure has to be introduced. Based on the parametric 

study, the relationship between coefficient ci of viscous damping in joints and modal 

pseudo relative damping factor i  for i mode shape can be obtained [4]. 

 

 

4. MODELLING OF NON-LINEAR SEMI-RIGID CONNECTION 
 

A large number of experimental results have shown that the connection moment-rotation 

relationships are non-linear over the entire range of loading for almost all types of 

connections [9,10,11]. To describe connection behavior numerous different 

mathematical models have been proposed during last three decades. In presented 

procedures the three parameter power, model proposed by Richard and Abbott [12] and 
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Kishi et al. [13] is adopted to represent moment-rotation behavior of the connection 

under monotonic loading (Figure 3a). Three parameter power non-linear model can be 

given in a form: 

 

   pp
o

ok
M

1

1 





  
(12) 

 

where ok  initial connection stiffness, p shape parameter, ouo kM /  reference plastic 

rotation and uM  is ultimate moment capacity of the beam-to-colum connection.  

 

 
Figure 3. a) Three parameter power model; b) Independent hardening hysteresis model 

 

The independent hardening model was adopted to simulate the inelastic connection 

behavior under cyclic loading. In this model, the caracteristics of connections are 

assumed to be unchanged through the loading cycles. The moment-rotation curve under 

the first cycle of loading unloading and reverse loading remain unchanged under the 

repetititon of loading cycles. The skeleton curve used in the model was obtained from 

three parameter power model. The cyclic moment-rotation curve based on this model is 

shown in Fig. 3b as a numerical result of connection's hysteresis behaviour. The 

independent hardening model is simple and easily applicable to all types of steel frames 

connection models. This model is defined in detail in [14,15]. 

The advantage of this non-linear model is in a clear formulation with the physical 

meaning of the parameters that can be simply experimentally obtained. 

 

 

5. P-DELTA EFECTS 
 

If the equations of equilibrium are placed on a deformed structure, the P-Delta term 

appears in the equation. The size of this product, in relation to other members in the 

equation, determines whether the design should be implemented on the theory of the first 

or second order theory. The product P-Delta can also be significant if only one of the 
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factors is large enough, that is, when the movement is small and a large axial force, or 

when the axial force is small and the movement is large. In such cases, the influence of 

the axial force on the transverse deformation cannot be neglected, so the calculation 

must be carried out using the second-order theory, that is, through the P-Delta analysis. 

It is a form of geometric nonlinear analysis in which it is assumed that the displacements 

are large, and that the deformations and rotations are of small size. 

By introducing axial forces into a design in this way, the structure characteristics change, 

and the elements of the axial forces are decrees the flexural stiffness and the tensile 

elements become stiffer. The P-Delta effect is expressed in high-rise buildings, and 

significantly increases the effective shear force on each floor. This analysis is important 

in determining the effect of gravitational load in simultaneous action with horizontal 

forces such as wind forces and seismic forces. Dynamic structural calculation using the 

second-order theory is required in the case of extremely strong earthquakes, and 

especially in flexible structures (such as, for example, unbraced frame systems with 

semi-rigid connections). This is also provided for by certain standards and regulations 

such as Eurocode 8, AISC (1994) and ACI (1995). 

The process of calculation the P-Delta analysis for the given vertical and horizontal load 

has iterative character, which can significantly increase the calculation time, which is 

particularly unfavorable in the dynamic analysis. First, it is necessary to carry out a 

design to estimate the axial force in the structure, and then with these forces calculates 

the stiffness of the system and determines the deformation and the internal forces. 

Obtained axial forces differ from those originally estimated, so additional iterations are 

required, as long as in successive iterations, the difference in force intensity and 

deformation does not become small enough, or less than the accepted accuracy. 

The impact of large displacements can also be considered using another approach. The 

effects of a significant change in the deformed shape can be taken into account by 

determining the unbalanced load due to the large displacement of the element nodes at 

the end of each time step of integration. An unbalanced load is transmitted as a 

corrective load in the next step of time integration. A more accurate result can be 

obtained if a change in the geometric stiffness matrix is determined in each change in the 

axial force in the element. It can also be applied at the same time by changing the 

geometric stiffness matrix and corrective load [4]. 

 

 
Figure 4. Effects of static and dynamic loads in seismic analysis 
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For conventional frame systems, which often occur in buildings, there are two types of 

load: static and dynamic. The static load, which is usually gravitational only, is applied 

to the structure before the earthquake, and it leads the structure into a deformed 

equilibrium position. After that, due to the fact an earthquake occurs in the appearance of 

inertial forces, most of which are usually the most significant horizontal inertial forces. 

They cause horizontal displacement, which result in the occurrence of the P-Delta effect. 

In addition, horizontal forces also affect the change of axial forces in the elements. 

Therefore, the assumption of constant axial forces, strictly taking, there is no 

justification, since the change can amount to more than 50%. This means that the 

dynamic load can significantly affect the change in the value of the axial forces 

determined only on the basis of gravitational (static) load [16]. 

In order for both types of load to be considered simultaneously, and to apply the real 

axial force in the design, static loading should be treated as a dynamic one. The static 

load, in function of time t, can be represented in the form, which illustrates Figure 4. 

Given the fact that the static load does not cause inertial forces, the value of loading time 

t1 should be such that the effects of force Po, treating it as static or dynamic, are equal in 

the frames of the accepted accuracy. When the loading time t1→∞, or when the load is 

applied extremely slowly, only static influences are obtained. Otherwise, when t1→0, 

there is a effect that encounters influences due to step load. After time t2, for which it can 

be assumed that t2 = 1.10 t1, the dynamic load, ie the displacement of the supports starts 

to appear (Figure 4). In this way, a unique method of numerical integration of the 

equation of motion for both types of load can be applied. 

 

 

6. SEISMIC ANALYSIS 
 

Numerical procedures in seismic analysis can be performed using equations of motion of 

a frame subjected to earthquake as a dynamic loading: 

 

FUMUKUCUM  g
  (13) 

 

in which  M  is the mass matrix, C  is viscous damping matrix and K is static stiffness 

matrix for the system of structural elements. Dash above matrices denotes standard 

correspondent matrices are modified with correction matrix G. The time dependent 

vectors UU  , and U are the relative node accelerations, velocities and displacements 

respectively, while the vectors gU  and F  are ground accelerations and externally 

applied loads.  

The equations of motions are integrated using step-by-step integration, with a constant 

acceleration assumption within each time step.  

During the numerical integration of the equation of motion, the axial force in the 

elements changes, i.e. it is not constant. That results, a simple superposition of loads is 

not applicable in the geometric nonlinear analysis, so the problem needs to be defined in 

an incremental form. 

Secant stiffness method is used to solve the nonlinear equations, that are nonlinear in 

terms of the displacements as well as the axial force. The solving procedure is very 
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applicable in computer software algorithm  giving the convergent solutions for dynamic 

loadings. The load increment F  or gU  is divided into a few smaller sub-increments 

in each time step to obtain faster convergence .  

 

Figure 5. Response of steel frame due to earthquake loading 

 

The incremental-iterative algorithm is based on evaluating secant stiffness matrix, which 

depends on the stiffness of connections, represented by slope of its moment-rotation 

curve at any particular moment value. The convergence is obtained when the differences 

between two consecutive cycles displacements at all joints reach the prescribed 

tolerance. The current connection stiffness becomes the starting connection stiffness for 
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the next load sub-increment. The convergent solutions for all load sub-increments are 

accumulated to obtain the total nonlinear response within time step [7]. 

Figure 5a ilustrates the responses of steel frames with semi-rigid and viscous beam-to-

column connections for different level of damping in connections. Two curves (Figure 

5b) are presented for two types of connections (Double Web Angle - DWA, Top and 

Seat Angle with Double Web Angle - TSDWA). The first of these connections are rather 

weak and the second is relatively stiff. The details of these connections can be found in 

[4]. On both diagrams, there is an evident irreversible plastic deformation as a 

consequence of significant seismic loading. 

 

 

7. CONCLUSIONS 
 

In order to obtain as realistic an quality results in the seismic analysis of steel frames, the 

effects of flexible nonlinear and eccentric connections, the effects of viscous damping in 

connections, the effects of second-order theory effects and the effects of dissipative node 

connections are considered in detail. All of these effects are separately considered 

through parameter analysis to determine the influence of a particular parameter on the 

response of the system. 

The role of the beam-column connection in steel frames is crucial for seismic analysis, 

given the fact that the connections were the most critical elements during the earthquake 

that had already happened. Obviously, it is nonlinear behavior of connections even for 

lower load levels and is especially evident in stronger seismic load. 

In order for nonlinear seismic analysis to be rational, efficient and engineering 

acceptable, the concept of selective nonlinear behavior of the structure was adopted, ie. 

only certain elements of the structure are adopted non-linear behavior, while all other 

behavior of elements are in the domain of linear elasticity of the material. For steel frame 

systems it is also sufficient to consider only nodal connections as elements with 

nonlinear behavior. 

It has been also established that it is necessary to take into account the flexibility of 

connections, because their ignorance will lead to results that are not close to the actual 

behavior of steel frames. 

The eccentricity of the connection also has significance depending on the size and type 

of connection. It has been shown that even in frame systems with a small eccentricity, 

circular frequency will differ significantly depending on whether eccentricity is taken 

into account or not. Two effects, flexibility and eccentricity of the connection, contribute 

to changing the distribution of internal forces in the structural system. 

Energy dissipation in nodes is usually an accompanying, side-by-side and beneficial 

appearance in the structure response. The paper proposes an approach to the dissipation 

of seismic energy in connections through dictated increased damping in connections. 

Numerical calculations have shown that in this way it is easy to control and limit the 

impacts in the structure, because a high level of reduction of maximum impacts is 

achieved. 

It is known that the effect of geometric nonlinearity increases with increasing load, and it 

is even more significant in frames with flexible connections than in frames with rigid 

connections. Flexibility of connections and geometric nonlinearity, simultaneously and 

individually, have a significant impact on the analysis of frame behavior because they 
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significantly influence on dynamic characteristics of the system. Comparing the methods 

of geometric non-linear analysis with constant and variable axial forces in a seismic 

calculation, it was concluded that in the orthogonal frames the procedure of constant 

axial forces gives completely satisfactory results, which is not the case in non-orthogonal 

frames, so it is necessary to apply the procedure to be taken into account the change of 

axial forces in the elements due to the seismic load effect. 

The proposed presented modeling and procedures, based on the developed finite element 

of the frame structures, significantly enhance the quality of the analysis, and gives good 

opportunities for modeling the behavior of steel frame structures. The process is based 

on a numerical calculation that is simply applicable in the design using a computer and 

contributes to a more efficient and more accurate calculation of structures exposed to 

earthquake effects. In order to obtain reliable quantitative results in non-linear dynamic 

analysis it is necessary to have the support of appropriate experimental research 

(especially for hysteresis behavior for various loading and unloading cases), both in the 

field of steel beams-column and in the field of node energy dissipation [17].  
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SEIZMIČKA ANALIZA ČELIČNIH RAMOVA SA 

POLUKRUTIM I VISKOZNIM VEZAMA  
 

Rezime: Za modeliranje odgovora čeličnih ramova u seizmičkoj analizi neophodno je 

primeniti materijalno-geometrijsku nelinearnu analizu čeličnih ramova sa polukrutim, 

ekscentričnim i viskoznim vezama greda-stub. Obe nelinearnosti, geometrijska 

nelinearnost strukture i materijalna nelinearnost veza, su razmatrane simultano. 

Fleksibilnost krajeva grede modelirana je pomoću rotacionih opruga na njenim 

krajevima sa nelinearnom relacijom moment-rotacija definisanom pomoću tri-

parametarskog modela. Ekscentričnost veze predstavljena je kratkim beskonačno krutim 

elementima. Viskozno prigušenje u vezi proporcionalno je brzini promene ugla relativne 

rotacije modelirano je pomoću rotacionih viskoznih prigušivača. Za takav model grede 

izvedena je kompleksna fleksiona matrica krutosti elementa. 

Parametarskom analizom utvrđen uticaj fleksibilnosti veze, ekscentričnosti veze, 

viskoznog prigušenja i teorije drugog reda na seizmički odgovor konstrukcije. Rezultati  

primera proračuna prikazani su na ilustrativnim dijagramima i slikama.  

Usvojeni model za proračun ramova može se primeniti i za  kontrolu ponašanja 

konstrukcije preko posebno dodatih konstruktivnih elemenata, kao što su disipativne 

čvorne veze. 

 

Кључне речи: čelični ramovi, nelinearna dinamička analiza, polukrute ekscentrične 

veze, viskozno prigušenje, disipativne čvorne veze 

 

 

 

 

 

 

 

 


