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Summary: Equilibrium analyses of masonry arches usually consider their convex forms,
such as circular, elliptical or pointed. However, besides them, there are also different
concave or inflectional arches’ shapes. Therefore, the aim of this paper is to apply the
thrust line theory to a basic arch of the concave form — a draped arch, which consists of
two annular sectors leaning against each other, oriented oppositely in comparison to the
semicircular arch. In accordance with the applied normal stereotomy, which implies
generic sections perpendicular to arch’s axis, the problem of equilibrium under self-
weight is analytically treated, and the closed-form expression for the thrust line is
determined. Moreover, limit equilibrium state is considered, and the analytical solution
for the minimum theoretical thickness of draped arch is provided.

Keywords: thrust line, masonry arch, draped arch, minimum thickness, static approach,
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1. INTRODUCTION

Equilibrium analyses of masonry arches usually consider their common convex forms,
such as circular [1, 2], elliptical [3] or pointed [4]. However, besides them, there are also
different concave, inverted or inflectional arches’ shapes (see [5] and few examples
shown in Fig. 1a,c,d). Therefore, the aim of this paper is to apply geometric formulation
(static approach) in equilibrium analysis to a basic arch of such form — a draped arch.
Namely, draped (or tented) arch consists of two annular sectors leaning against each
other, oriented oppositely in comparison to the semicircular arch, as one can see in Fig.
la. Its shape resembles the shape of a tied drapery i.e. long heavy curtain (Fig. 1b),
which was a cause for its name.

Analytical modelling of the problem is based on thrust line theory, where thrust line
represents the locus of the application points of the resultant thrust forces at the joints
between the voussoirs of a structure [1, 2, 3, 4]. Therewith, common assumptions about
masonry properties are adopted: no tension strength, infinite compression strength and
sliding cannot occur. Thus, the possibility of failure due to material strength or due to
sliding is eliminated, permitting only the collapse due to instability, by relative rotation
of structure’s parts around the edge of the joint of rupture. Accordingly, if a structure is
of sufficient thickness, and a thrust line is lying everywhere within the structure’s
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boundary (between intrados and extrados), the structure is safe [6]. In order to apply a
geometric formulation, i.e. derivation of the limiting thrust line, to a draped arch, its
geometrical properties have to be thoroughly treated.

(a) (b)

Figure 1. (a) Draped arch, (b) drapery, curtain, (c) ogee arch, (d) bell-shaped arch

2. ANALYTICAL MODELLING

Due to the symmetry of the arch, in the following discussion only a half-arch shown in
Fig. 2 is considered. It is the monolithic arch of zero tensile strength and therefore acts
only in compression. R and t denote the mean radius and the thickness of the arch ring,
respectively. The minimum value of thickness to radius ratio, t/Rmin, represents the
minimum possible thickness of the arch normalized by the radius, and is of particular
interest of this paper.

Normal i.e. radial stereotomy, which assumes the directions of the joints between
voussoirs concurrent to the centre of an arch i.e. generic sections perpendicular to arch’s
axis (c. Figs. la and 2a,c), is applied. Thus, the forthcoming analytical modelling
employs polar coordinates, with the origin set in the half-arch’s centre O, as shown in
Fig. 2a,c. The angle ¢ is the angular coordinate, measured from the top horizontal edge
(summit) toward the springing, which defines the generic section (see Fig. 2c).
Accordingly, the weight V of a finite upper portion of the arch, between the summit and
a generic section at the angle ¢, is represented by the area of the corresponding arch ring:

V=Rto )

The abscissa xv of the centre of gravity of the upper portion of the arch (Fig. 2b), i.e. the
centroid of the area which corresponds to the weight V, can be computed according to
the following expression:
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When the generic angle ¢ reaches right angle, the weight W of a half-arch shown in Fig.
2a is obtained:
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Therewith, the abscissa xw of the centre of gravity of the half-arch is simplified from Eq.
(2) to the following expression:
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Figure 2. Draped arch: (a) geometric parameters of half-arch, (b) force polygon, (c)
free-body diagram of the isolated finite top portion up to the generic section

Since the halves of the draped arch are leaning against each other at the apex in a single
point B, the horizontal thrust force H must pass through that point (see Fig. 1a and Fig.
2a). On the other hand, since the minimum thrust line, having the greatest rise, is
assumed, the application point S of the reaction force R is positioned at the bottom end
of the springing. Accordingly, the rotational equilibrium of a half-arch about the point S

is expressed by the following equality:
£
H (R + E] =Wxy ®)
whereas the values W and xw are given by Eqgs. (3) and (4), respectively. Thus, one can

derive the value of horizontal thrust:
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The resultant thrust force T at a generic section at the angle ¢ together with its point of
application A is uniquely determined from the force and moment equilibrium of the
finite portion of the arch; it can be done either graphically with the force polygon (Fig.
2b,c) or analytically by solving equilibrium equations. Accordingly, from rotational
equilibrium about point A follows:

H plep) sing = Vip) (x,(p) — plp) cos @) (7

Finally, from the previous equality, one can determine the distance p between the thrust
line and the centre of the arch, deriving the closed-form expression for the thrust line
within draped arch:

Vig) x,(g) 1

Hsing + Vip) cos o -T2 . 12 R g cotg (8)
2R+t 12 R% + #2

ple) =

where V(¢), xv(¢) and H are given by Egs. (1), (2) and (6), respectively.

3. MINIMUM THICKNESS

Eq. (8) does not assume limit thrust line which corresponds to the limit (minimal)
thickness of the arch. In order to determine such state, it is neccesary to inspect the flow
of the forces (thrust line) through the arch. Thus, the distance ¢ between the thrust line
and the extrados (see Fig. 2c) is defined by:

Glg) = ply) —( —EJ ©)

2

Analysing the function given by Eq. (9), within the interval between 0 and m/2, it is
determined that its (local) minimal value corresponds to ¢=0. Accordingly, thrust line is
closest to the extrados at the summit of the arch; therefore, that position is directive for
the minimum thickness value. With respect to Eq. (8), the position of thrust line at the
arch’s summit, indicated by the point D (see Fig. 2a,c), is defined by the following
expression:

1
_D'i'?' -0} = 2 12 R (10)

IR+t 2R+ 12

Accordingly, thrust line does not start downwards from the apex of the arch (point B),
but from the point D (being at the certain distance, defined by Eq. (10), from the point
B).2 Further, equalizing Eq. (9) with zero (or equalizing Eq. (8) with R-t/2), and solve for
t, results in the following expression:

2 Milankovitch [7] reached the similar conclusion regarding the masonry buttress with
the horizontal force acting at its top.
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For unit value of radius (R=1), the value of minimum thickness t/Rmin 0f draped arch
(presented by the thickness to radius ratio) is obtained:

-_
t/Rpin = Rﬂ'zx-ﬁ +11 -+ —1=10,79829 = 4/5 (12)
V2V37T + 11

Draped arch of such proportions (having minimum thickness), with the corresponding
limit thrust line, is shown in Fig. 3b. In addition, draped arch of the thickness greater and
smaller than the minimum is shown in Fig. 3a and Fig. 3c, respectively.

I (b) I ©

Figure 3. (a) Draped arch of sufficient thickness — stable arch (R = 1), (b) minimum
thickness and corresponding limit thrust line — limit equilibrium state (/R = 0,79829),
(c) thickness smaller than the minimum — impossible state (t/R = 0,6)

4. CONCLUSION

In this paper, after quilibrium (static) approach, thrust line analysis of draped arch under
its own weight has been conducted. Its particular geometric properties have been
analytically treated, the coresponding horizontal thrust has been determined, and the
closed-form expression of a thrust line has been derived. Moreover, limit equilibrium
state is considered, and analysing the flow of the thrust line within the draped arch, the
analytical solution for the minimum thickness has been determined. The analysis carried
out in this paper can be used as the basis for the appropriate analysis of mechanical
behaviour of other more complex inflectional shapes of masonry arches, such as bell-
shaped or ogee arches, containing a draped arch as a part. Regarding the further possible
developments of the present research, different types of stereotomy, material properties,
as well as different loading conditions remain to be considered.
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BEJIEHIKA O UCIIUTUBAILY PABHOTEKE
MACHUBHOI IPAITEPACTOTI JIYKA

Pesume: IIpunuxom ucnumusarsa pasHomedice MACUBHUX TYKOBA OOUUHO ce pasmMampajy
KOHBEKCHU O00UYU, KAO WIMO CY KPYIHCHU, enuncacmu uiu npeiomwenu. Mehymum,
nopeo wux nocmoje U pasiuyumu KOHKagHu uni unguexcuonu oonuyu aykosa. Cmoeaa je
Yub 08020 paoa npumena meopuje NOmnopHe JuHuje Ha OCHO8HU JIYK KOHKABHO2 00auKa
— Opanepacm JyK, Koju je obpazoean 00 08ajy HACHPAMHO NOCMABHEHUX UCEUAKd
KPYICHO2 NPCMena, CYRpOmMHO OPUjeHMUCAnux y 0OHOCY HA NOAVKPYICHU AVK. ¥ CKIaoy
C NpUMerbeHoM HOPMATHOM CIMeEPeomoMUjom, Koja noopasymesa npecexe ynpasHe Ha
ocy ayKa, npobiem pasHomedice H0O CONCMEEHOM MENCUHOM Ce ananumuuxy oopahyje,
me ce U3600u U3pA3 3a NOMNOPHY TUHUJY Y 3ameopeHom 00auKy. LlImasuwe, na ocHo8y
pasmMampar.a cpaHuyHoe Cmara pasHomedce, oopelyje ce AHATUMUYKO peulerbe 3d
MUHUMATIHY MeoPUjcKy 0ebbuny opanepacmoe ayKd.

Kwyune peuu: Ilomnopua nunuja, Macuenu J1yKosu, Opanepacm JyK, MUHUMATHA
0e0.buUHa, CMAMUYKO UCKUMUBATIbe, UCHUMUBAIbE SPAHUYHO2 CINATA PAGHOMEeNHCe
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