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Summary: This paper deals with the deflection of a cantilever rod bent by a uniform

load and a concentrated force at its end point, which involves geometrical nonlinearity

and the classical Bernoulli-Euler plane elastica theory. The nonlinear two-point

boundary value problem describing the equilibrium configuration of that rod was solved

by use of the Laplace transform and the method of successive approximations. The

obtained analytical approximation of the solution was compared with both numerical

and experimental ones obtained in the laboratory.
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1. INTRODUCTION

It is a well known fact that when compared to the theory of finite deformations, the
linear theory called strength of materials yields more severe predictions of maximal
deflections. For example see [1], Section 16. dealing with a horizontal cantilever rod
with a concentrated vertical load acting at its free end, where the solution of
corresponding nonlinear two point boundary value problem was given in terms of
elliptic integrals. In order to solve more complex problems of plane elastica i.e. problems
with different constitutive axioms and different load, engineering communities are still
interested in efficient methods for solving both linear and nonlinear differential
equations, see [2-8]. Recently, due to an enormous and wide-spread availability of
computational power one more efficient method was added to the list, see [9] where the
Laplace transform and the method of successive approximations (LT&MSA for short),
was used in finding the analytical approximative solutions describing Toda oscillators
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and the optimal orbital transfer. In the latter case the nonlinear two-point boundary value
problem (shortly TPBVP) within the standard procedure suggested by the Pontryagin
maximum principle was solved. Namely, it is a widely held and somehow misleading
belief that the Laplace transform method is particularly suited to solving only linear
initial value problems. Regarding TPBVP one may either use the finite Laplace
transform, see [10,11] or LT&MSA within the framework of shooting method, see [9],
[12]. The novelty of the result that follows will be use of LT&MSA in obtaining the
approximate analytical solution of the nonlinear two-point boundary value problem
describing the equilibrium configuration of the horizontal cantilever rod bent by a
uniform vertical load and a vertical concentrated force acting at its end point. In the
following calculations the Mathematica system, release 11.00, and Fujitsu Celsius M470
were used. Finally the results will be compared to numerical ones obtained by ANSYS
5.7.1 software as well as the experimental measurements reported in [13].

2. THE PROBLEM

Consider a linearly elastic rod of length L, straight, prismatic and horizontal in an
undeformed state, clamped at the left end, say O, and loaded by a uniformly distributed
vertical load along its length, say w = W / L, and a vertical concentrated force, say
F acting at its free end. Then define the rectangular Cartesian coordinate system XOy
whose axis X coincides with the rod axis in the undeformed state and Vy axis
perpendicular to X axis and oriented downward as the force F , see Fig. 1.

L
)

Figure 1 System under consideration

Let EI and S denote bending rigidity of the rod and the arc length of the rod axis
measured from O respectively and let and ¢ = (5] be the angle between the tangent to
the rod axis and the X axis. Introducing x = x({5) and ¥ = y(s) as the coordinates of an
arbitrary point of the rod in the deformed state, H =H(§) and ¥V =V (5) as the
components of the resultant force and M = M (5 as the resultant couple, and referring to
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general theory [14] as well as to Fig. 1, one may state the equilibrium and geometrical
equations corresponding to the rod element of length dS,

dH _ v _ M _ o dr _ a_
=0 o =-w Pl V cosg, o, = cos@, o= sing. Q)

The constitutive axiom corresponding to the classical Bernoulli-Euler theory reads
M = Elg', (2)
where (-} = d(-1/d5. The boundary conditions corresponding to this problem read
H(L)=0, V(L) =F, M(L) =10, x(0) =0, y(0) =0, ¢(0) =0, 3)

From the above equations one easily finds the nonlinear TPBVP determining the large
deflections of the cantilever rod. It reads

Elp" = —[F+w(lL—5)]cosp, e0)1=0 ¢(L)=10 4)

and further, after introducing the dimensionless quantities

. 5 FL* W
L PTEHTTF
it becomes
¢=-p[l+q(l—t)]cosg. @0)=0 ¢(1)=0, (5)

where dot over the symbol denotes the derivative with respect to t.

Finally, in order to compare the approximate solution of this problem with numerical one
as well as with the measurements of [13] one may choose the following values

L=04m, W =03032N, EI =0.02591Nm?, F = 019%N. (6)

With this preparation done one may apply LT&MSA to (5). Namely, as in [9], [12] one
may introduce the missing initial value, say

gili=b U]

and then following the lines of [15] apply LT&MSA to find the approximate analytical
solution of the corresponding nonlinear initial value problem
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§=—pll+ql—D]cosp, @(0)=0, $(0)=b, (8)

say @it b). Then one may differentiate that solution and apply the Newton method to

$(Lb) =0,
in order to find the value of b ensuring (5) and (8) to have the same solution.

3. THE SOLUTION

Assuming ¢(5) = 1 and noting that

c-:ns:p—].—_xp + cp ——qo 1+ 0(e®),

Tom

one may use 1—g@7/2 +¢*/24 — °/720 as a reasonable replacement of cosine
function in (5) and (8) so the Cauchy problem to be solved reads

1 1 1
w T 1 _ _ B
¢ =—-pll+401 t]](i ?qa -I—Mqa ~30¢ ]

e(0)=0 @(0)=

Note that the right hand side of the above equation consists of a linear part and a
nonlinear part left in curly brackets, i.e.

1 1 1
o o 4 . 1 _ .. I T
¢=pat —plg+1)+{p(g+1 qt](zqﬂ t559 ?zuq:')}'
@(0)=0 ¢(0)=h ©)
Then applying the Laplace transform to (9) with €5} = L{@(t)} one gets

Ellq‘+1.|

-z _ _*
oS) =g +2EH By el r1-an (S0t + Set - ot}
(10)
According to Gustav Doetsch [15, p.106], in order to get the initial approximation of the
solution, say ¢, = gt b) one has to neglect the nonlinear part of (10) and perform the
inverse transform, say £7* so

plg + 1)t° ¢t
+ m :
2 6
Referring to the same reference again the next approximation say e, (t, b} reads
@ (t.b) = @yt B)bt +

e {Eepia +1 - ) (303(5) - 2 od ) + s 08 b))} (D

@o(t.b) = bt —
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Note that both the Laplace transform and its inverse in (11) can be easily performed
since g (t, b) is given in the form of polynomial so w3 (¢, b). @F(t.b). @h(t, b)), will
be polynomials too. Also note that @7(t, i), represents polynomial of six degree with
respect to b and of 19-th degree with respect to t. The continued application of this
process lead to

@n(t.B) = @t b) +

e Zemq +1- a0 (Gei b - Sei i wh) + S ei b))} (12)

so in the case of sufficiently regular nonlinear part of the original equation, the solution
is found as lim ¢, (t. b} In practice only a few approximations are to be calculated and
M=o

then one sees whether they are approaching a limit, what will happen only within a
certain interval of time, in the present case [0,1].

4. THE RESULTS

For the declared values of the rod and load parameters (6), one may assume that
g, (t. b} will be good enough approximation in this problem. So differentiating
g, (1. b) =0 what can be easily done in the Mathematica system and solving &, (t. &)
one gets that the solutions of (5) and (8) are the same for

b=1.88141

For comparison the corresponding value of the numerical solution presented in [13]
reads 1.86314. In Fig. 2 one can see agreement of ¢, (£, 1.88141) with the numerical
solution obtained in [13].
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Figure 2 Comparison of approximate (orange) and numerical (blue) solutions of (8)
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Finally, referring again to (13) we note that the maximal deflection of cantilever rod
y¥(L) obtained from numerical solution reads 0.196. The corresponding value
measured in the experiment reported in [13] is ¥¥(L} = 0.193. Note that

1
yvA(L) = 0.4[ sin g, (£ 1.88141)dt = 0.213,
o

so the absolute value of the measured value ¢ and y#(L) predicted by the
approximate analytical solution (11) for b = 1.88141 is less then 0.02 what seems to be
good enough. One may speculate that either more terms in the Taylor series of cosine
function or the next approximation to be calculated by (12) may increase the accuracy,
but all that goes beyond this work.
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INPUBJINKHO PEHIEIHE 3A KOHAYHE YI'MBE
TEIIKE KOH3OJIE CA CHJIOM HA KPAJY

Pezume:Y pady ce npoyuaea yeub kouzone noo 0ejcmeom YHUGOpmMHO pacnopelhenoe
onmepelierba u KOHYeHmpucane cuie Koja oenyje Ha weHoM CLoO0OHOM Kpajy, a wmo
VKBYUYje HeMUHeapHoCcm 2eomempujckoe muna u knacuuny Bepuynu-Ojneposy meopujy
enacmuyHux wmanosa. Henuneapnu oeomauxacmu epanuunu 3a0amax Koju onucyje
PasHoOmedicHy — KOHQueypayujy — KOH3ole pewasan je npumenom Jlannacosux
mpancopmayuja u memooa CyKyecusHux anpoxcumayuja. Jobujena ananumuuxa
anpoxcumMayuja pewienja paHudHo2 npodaema ynopehueana je ca HyMepuuKum
peuierbem Kao i ca eKCnepuMeHmanium pesymamuma 00oujenum y 1abopamopuju

Kwyune peuu: Jlannacosa mpancopmayuja, HeauHepHu npodremM  paAHUYUHUX
8peOHOCMIU, CYKYeCUBHe anpokcumayuje, paeancka meopuja enacmuidHux wmanoga
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