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Summary: The structure studied in the paper is an infinitesimal mechanism made from 
insulated bars linked by cables. The rigidity of the structure is ensured by pretensioning 
the cables. The form-finding of the equilibrium shape of the pretensioned structure  was 
performed using a geometric non-linear structural analysis method. 
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1. INTRODUCTION 
 
Almost one hundred years have passed since a ‘‘proto-tensegrity,’’ was built by a truly 
constructivist artist, Karl Ioganson, in 1920 and exhibited in Moscow in 1921, under the 
title of ‘‘Study in Balance.’’[3] In 1947, the first tensegrity structure was invented and 
built by a young artist named Kennet Snelson. The interest in these fascinating 
sculptures slowly migrated from the intuitive, inspirational world of art into the 
systematic and rigorous world of science, to recently blossom in applied areas of science 
and engineering. The terminology of tensegrity was first used by Fuller (1962) to 
describe Snelson’s structures in his patent “Tensileintegrity Structures”. Не characterizes 
them as islands of compression in an ocean of tension. Nowadays the Rene Motro’s 
definition is widely accepted: “A tensegrity system is a system in a stable self-
equilibrated state comprising a discontinuous set of compressed components inside a 
continuum of tensioned components.”[5]   
 
The Tensegrity structures, which consist of continuous tension elements and 
discontinuous compression elements, were also proposed by Fuller. A specific feature of 
tensegrity structures is that their compression components do not touch each other and 
do not transfer each other the compression forces which they are subject to. They can be 
defined as a subclass of cable structures, but unlike the latter their tensile forces are not 
anchored. The stability and stiffness of tensegrity structures are ensured by a self-
equilibrated and self-stress state among tension and compression members. The 
tensegrity structures have the structural rigidity only when applying the self-equilibrium 
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stress to the cables and struts and is conditioned by its pre-stress state; therefore, 
calculating the pre-stress is the key step for any cable-struts structure. With respect to the 
basis of the tensegrity concept, Geiger first invented the cable dome, which includes a 
compressed ring in the boundary of a tensegrity structure, the so-called Geiger form.[4] 
The first cable dome was designed by Geiger for the Olympics in Seoul (1986), followed 
by the Redbrid Arena in Illinois (1988), the Florida Suncoast Dome in St. Petersburg 
(1988), the Taoyuan Arena in Taiwan (1993), and the oval plan Levy form of the cable 
dome for theOlympics in Georgia (1996). Subsequently, Levy improved the Geiger form 
and invented the Levy form, which includes tension-only cables, compression-only struts 
and a compressed ring. [6] 
 
Examining the well-known tensegrity sculpture of Snelson, we can denot that it is very 
abstract, geometric, reduced to a set of simple basic elements, bars, and cables. Needless 
to say that at the time it was built theoretical investigation of tensegrity structures of this 
complexity was simply missing. Hence it is purely experimental. A major step in 
designing tensegrity structures is form-finding.[1] Form-finding refers to the process of 
determining special geometrical configurations that lead to, at least, a state of self-stress 
for tensegrity structures. Fuller (1962) and Snelson (1965) carried out early studies on 
the form-finding of regular tensegrity structures. The existing form-finding methods can 
be divided into two broad classes, analytical and numerical.[2] One of the simplest form-
finding methods is undoubtedly the analytical method. This method has been used 
successfully for the form-finding of prismatic and cylindrical tensegrity structures.[1] 
However, the method is feasible only for structures with high orders of symmetry. As a 
general method, Pellegrino (1986) developed a nonlinear programming approach to the 
form-finding of tensegrity structures.[4] As a type of form-active structures, tensegrities 
need a form-finding process to determine their self equilibrated configurations in the 
absence of external loads. In general, the analytical form-finding methods are used for 
regular symmetric structures,e.g. prismatic tensegrities and truncated regular polyhedral 
tensegrities. For most tensegrities, the form-finding analysis can be made only by 
numerical methods.[2]  
 
As a powerful tool for structural analysis, the finite element method has also been 
introduced for the form-finding of tensegrities, in which one generally needs to assume 
an initial shape close to the final solution. Recently inspired by the molecular dynamics 
method, Li proposed a Monte Carlo form-finding method to search the stable 
configuration of a tensegrity by employing the stochastic scheme of nodal 
displacements.[2] Pellegrino and Calladine presented a classic singular value 
decomposition (SVD) technique to obtain the independent self-stress modes and the 
independent displacement modes of the cable-struts structures. Considering cable dome 
with multiple self-stress modes, Yuan proposed a general method, referred to as double 
singular value decomposition (DSVD). SVD and DSVD are effective in finding the pre-
stress modes when we know the reasonable structural geometry, but those methods 
cannot consider the structural deformation and loads. That is way form-finding is a celtal 
key for solving the problem of geometrical configuration.[4] 
 
Nowadays, tensegrity structures are emerging as the ‘‘structural systems for the future’’ 
(Motro, 2003) and are perceived as potential solutions to many practical problems. In 
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civil engineering, tensegrity structures have a relatively long history, having been 
proposed for various applications including shelters, domes (Fuller, 1962; Motro, 1990; 
Pellegrino, 1992), or bridges (Micheletti, Nicotra, Podio-Guidugli, & Stucchi, 2005 as 
well as in other fields e.g. aerospace engineering they are regarded as promising 
deployable structures, which will enable various applications like adaptive space 
telescopes, flight simulators, antennas, and robots, as well as in the field of biology as 
models for the structural mechanisms through which cells are organized and function.[6] 
 
 
2. DESCRIPTION OF THE STRUCTURE 
 
The main target of the study presented in this paper is to create a tensegrity structure for 
a cylindrical roof of 15-20 meters diameter. The analyses were performed on a half 
model of 400 mm diameter and 600 mm/2 = 300 mm length. The starting configuration 
presented in figure 1. was obtained by extending a cable-strut polygon in a three 
dimensional structure [7] . The analyses presented in the next section show that the 
prestressed structure is stable and can support loads.  However as it can be observed in 
the figure 1, the structure cannot be used in practice, because it needs supports which 
must take the reactions on the direction of the generator of the cylindrical surface. 
(These reactions in the nodes 1:6 and 25:30 are given by the prestress and the external 
loads.) 

 
 

Figure 1. Cylindrical roof structure 
 
In order to avoid the use of these horizontal supports, two longitudinal struts and two 
additional anchorage cables were added, as it can be seen in the figure 2. The 
configuration of this new structure was established by a form-finding process which will 
be described in the next sections. 
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Figure 2. Cylindrical roof structure with longitudinal struts and additional anchorage 

cables 
 
 
3. THE ANALYSIS OF THE STRUCTURE 
 
The structure presented in figure 2 has n = 36 nodes, b = 49 truss elements (cables and 
struts) and a number r = 40 constraints given by the supports.  
The equilibrium of a truss structure can be expressed by the equation 
 

Aσ = F. (1) 
 
Here A is the equilibrium matrix. In the case of a structure of n nodes, b trusses and r 
simple support constraints, matrix A has 3n lines and b+r columns, σ = (N1 N2 ... Nb R1 
R2 ... Rr)T  is the vector of unknown internal forces in the trusses and in the supports and 
F = (Fx1 Fy1 Fz1 Fx2 ... Fxn  Fyn Fzn)T is the vector of external nodal loads. 
 
The deformations ε (the elongations of the trusses and the displacements of the 
supports) can be expressed by the equation: 
 

ATa=ε. (2) 
 
Here AT =B is the compatibility matrix and a = (u1 v1 w1 u2 ... un vn wn)T is the vector 
of displacements of the nodes.  
The matrix A can be formed by using the direction cosines of the axes of the truss 
elements.  
Since in the case of the structure studied here q = rang(A) =  88 < min(3n, b+r) = 89,  
the structure has a degree of s = b+r – q = 1 statical indeterminacy and has m = 3n – q = 
20 kinematic degrees of freedom. 
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To the m degrees of freedom correspond a set of m independent vectors of displacements 
of nodes, which are modifying the configuration of the structure without producing 
defornations of the elements. These displacements can be obtained as the null space a0 
of the matrix B=AT. Kinematic systems can support only loads for which the vector F 
is orthogonal with the nullspace a0. 
The statical indeterminacy means that the structure has s = 1 sets of selfstress efforts σ0, 
which satisfy the equilibrium equations without external loads.  
 

A σ0=0. (3) 
 
These selfstress efforts can be obtained as the nullspace of the matrix A. 
Tensegrity structures are prestressable and by prestress they get stiffness. 
Kinamatic degrees of freedom are fixed such that the structure can support external 
loads. 
 The stiffening effect of the prestress efforts can be introduced by expressing the 
equilibrim of the deformed shape of the structure. 
 

Kga+Aσ=F. (4) 
 
In equation (4) Kg is the geometric stiffness matrix and takes into account the effect 
of the initial efforts on the change of the geometry of the structure. Matrix  Kg is 
formed using the geometric characteristics and the prestress of the structure and 
does not depends on the mechanical characteristics (area of the section of the 
elements and elastic properties of the material) .  
If the prestress efforts can give stiffness to the structure, matrix  
 

Q= a0TKg a0 (5) 
 
is positive definite.  
 
 
4. THE FORM-FINDING 
 
The final configuration of the structure from figure 2 was obtined in the following 
manner: First an initial initial configuration was established in which the two 
longitudinal struts were of 188 mm length. These longitudinal longitudinal struts were 
removed and replaced by pairs of unit following forces representing the efforts in these 
elements. The equilibrium configuration of resulted kinematic system with m + 2 = 22 
degrees of freedom was determined by solving the equilibrium and continuity equations 
 

Kga+Aσ=F 
ATa=0. (6) 

 
for displacements a and efforts σ. In equation (6) F contains only the pairs of following 
forces representing the efforts in the supressed longitudinal struts.  
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For solving system (6) an incremental-iterative algorithm was used. The geometric 
stiffness matrice Kg and the equilibrium matrice A were updated after each iteration. On 
the final converged configuration the length of the longitudinal stuts become 192.87 mm 
which is maximum for the given kinematic system, such that after reintroducing these 
elements the rank of the equilibrium matrix A becomes less with one unit. In other words 
the structure becomes once statically indeterminate. Verifiying relation (5) resulted that 
the prestressed structure is stable. 
In table 1 are given the length of the cables and struts and in figure 3 is presented the 
physical model of the whole structure. 
 

Table 1. Length of the struts and cables of the physical model 
 

Element example Length (mm) Total number 
short strut 1-2 130 10 
long strut 8-9 200 13 

longitudinal strut 31-33 193 4 
short cable 1 7-8, 9-10 69 14 
long cable 2-8 102 32 

short cable 2 2-31 41 8 
short cable 3 14-33 38 8 

anchorage cable 2-36 156 4 
 

 

 
 

Figure 3. Physical model of the roof structure  
 

Using the analyse and form-finding presented above, it becomes possible to get other 
more complexe structures. In figure 4 is presented the symmetric half of a cylindrical 
roof structure with seven elements in its transversal sections. 
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Figure 4. Cylindrical roof structure with 7 elements in the transversal section 

 
 
REFERENCES 
 
[1] Koohestani, K.: Form-finding of tensegrity structures via genetic algorithm. 

International Journal of Solids and Structures, 2012, p.p. 1. 
[2] Li-Yuan Zhang, Yue Li, Yan-Ping Cao, Xi-Qiao Feng.: Stiffness matrix based form-

finding method of tensegrity structures. Engineering Structures, 2014, p.p. 1-2. 
[3] Jianguo Cai, Jian Feng.: Form-finding of tensegrity structures using an 

optimization method. Engineering Structures, 2015, p.p. 1. 
[4] Jiamin Guo, Jiqing Jiang.: An algorithm for calculating the feasible pre-stress of 

cable-struts structure. Engineering Structures, 2016, p.p. 1-2. 
[5] Metodieva Ilieva, Y.: Potential applications of tensegrity structures to bridge 

construction. International Conference on Traffic and Transport Engineering, 2014, 
p.p. 5. 

[6] Sultan, C.:  Tensegrity: 60 Years of Art, Science, and Engineering. Advances in 
Applied Mechanics, 2009., vol. 43, p.p. 70-71. 

[7] Micheletti, A., Cadoni, D.: Design of Single-Layer Floating Compression 
Tensegrities. CSMA 2011 10e Collogue National en Calcul des Structures, 2011. 

 
 
 



 

6. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА 
Савремена достигнућа у грађевинарству 20. април 2018. Суботица, СРБИЈА 

72 | ЗБОРНИК РАДОВА МЕЂУНАРОДНЕ КОНФЕРЕНЦИЈЕ  (2018) |      

 
 

ПРОЈЕКАТ СТРУКТУРЕ ТЕНСЕГРИТИ ЗА 
ЦИЛИНДРИЈСКО КРОВАЊЕ 

 
Резиме: Структура студирана у папиру је бесконачно мањи механизам израђен од 
изолираних шипки повезаних кабловима. Ригидност конструкције обезбеђена је 
претенцијом каблова. Утврђивање облика равнотежног облика преднапете 
структуре извршено је коришћењем геометријског нелинеарног метода 
структуралнe анализe. 
 
Кључне речи: Тенсегрити, цилиндрични кров, проналажење форми, структурна 
анализа 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


