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Summary: In this paper, three dimensional frame structures, subjected to cyclic loading 

are analyzed.  In numerical examples, rectangular and I cross section shapes are used for  

elements of structures subjected to various loading cases. For definition of material 

behavior, elastoplastic model of material, based on the Preisach model of hysteresis is 

used. Some aspects of convergence, as well as numerical performance of this analysis are 

shown. 
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1. INTRODUCTION 
 

Since steel frames are widely used as structural systems in building industry, optimizing 

numerical analysis of this problem is of great importance.  If the structure is subjected to 

cyclic loading in plastic domain, convergence of the analysis is hardly achieved and 

possibility of error increases. One of the method for describing stress-strain diagrams of 

material behavior is incorporating  hysteretic operators in material models. In this paper, 

Preisach model, of hysteresis [1], which has been implemented in elastoplastic analysis of 

trusses subjected to cyclic loading [2], is used for the purpose of adequately modeling 

material mechanical properties in frames. This hysteretic operator [3] is used in various 

physical problems, where this phenomena occure, since it is probably the most powerful 

operator [4]. It is shown in[5] that analysis of trusses based on this model of hysteresis can 

be expanded to frame elements, if the cross section of element is divided on fiber elements, 

that are modeled as truss elements in [5]. Preisach model of hysteresis can also be used 

for defining moment-curvature relation as analytical expression in closed form [6], [7] as 

presented in section 2 of this paper. However, for various cross section types and arbitrary 

load cases, it is inefficient and difficult  to evaluate analytical model for these cases. 

Hence, fiber element approach can provide, as it is presented in this paper, very effective 

elastoplastic analysis of three-dimensional frame structures subjected to cyclic loading. 

In the second section of this paper, basic expressions and considerations for aplication of 

Preisach model of hysteresis in structural analysis are shown. In third section, numerical 

examples are shown and finally conclusions are presented in section 4. 
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2. APPLICATION OF HYSTERETIC OPERATORS IN NUMERICAL 

ANALYSIS 
 

Analytical expression for uniaxial material behavior based on the Preisach hysteretic 

operator is first presented in [8], [9] :  
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Where E is elastic modulus, Eh is hardening modulus, Ymax and Ymin are limits of initial 

nonlinear hardening, G is hysteretic operator and A is corresponding area in Preisach 

triangle [9]. This stress-strain relation can be extended in such way that different strains 

in cross section could define corresponding stress diagram in cross section and thus 

expression for moment can be derived [6]: 
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(2) 

Where b and h are dimensions of cross section and  is curvature. Just like Preisach 

triangle represents geometrical interpretation of expression (Error! Reference source not 

found.1)Error! Reference source not found.Error! Reference source not 

found.Error! Reference source not found.Error! Reference source not found.Error! 

Reference source not found.Error! Reference source not found.Error! Reference 

source not found.Error! Reference source not found.Error! Reference source not 

found.Error! Reference source not found.Error! Reference source not found.Error! 

Reference source not found.Error! Reference source not found., for expression (2),  

corresponding geometrical figure for analysis is Preisach prism (1(b)) 
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Figure 1.(a) Stress-strain relation for material defined with (Error! Reference source 

not found.1); (b) Example of limiting (Preisach) prism in first step of loading in plastic 

domain (pure bending). 

 

Numerical implementation of expression (Error! Reference source not found.1) was 

presented in detail in [5] where equation for finite element method for trusses are derived. 

It was also shown that, for simple 2-dimensional frames with rectangular cross section, 

fibre-element approach is practical for implementation and that convergence of numerical 

analysis is easily achieved.  

For numerical analysis in section 3 of this paper, stiffness matrix of frame cross sections 

is derived based on  Euler-Bernoulli beam theory.  

Defined 2-node frame elemens have possibility to achieve plastic deformation only at 

nodes (concentrated plasticity method), but effects of distributed platicity are 

approximated with increased number of elements per frame. 

 

 

3. NUMERICAL EXAMPLES 

 
In this paper , numerical examples represent analysis of three-dimensional frame 

structures. In both examples, one storey and one bay frame structure is analyzed under 

cyclic loading (Figure 2(a)). Parametric analysis consisted of varying cross section types 

(rectangular and I cross section), varying  number of elements per one frame and varying 

number of integration point in cross section. 

Material properties are also varied in a such way that beside presented material property 

in Fig.1 (E=200GPa, Eh=20GPa, Ymax=300MPa, Ymin= 248MPa) corresponding  

material property with no hardening (nonliner and linear) is also used in same numerical 

experiments. Analyzing structures and loading scheme are presented in Fig2. In numerical 

examples 1 and 2, one storey frame structure is analyzed under static and cyclic loading 

in form of horizontal displacement of its top. 

This frame represents 3-D variation of El-Zanaty frame experiment. Material properties 

are presented in Figure 1. I cross section of frame elements represents W8x31profile, while 

dimensions of rectangular are b/h=3cm/24cm. 

 

 
Figure 2.(a) Three dimensional structure in numerical examples; (b) Loading history for 

displacement function u(t); 
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Scheme of integration  are based on rectangular rule [10] for I cross section and rectangular 

cross section with three levels of mesh density. The number of integration points is 

32,128,512 and 8, 32, 128 for I cross section and rectangular cross section respectively. 

Before loading history for displacement u(t) was applied, structure was subjected to 

gravity load in form of concentrated forces P=450kN (Figure 2). 

Levels of maximal loading displacement u(t) are coresponding for top structure drift of 

1.06% (3.2cm) for the first loading case  and 2.12%(6.4cm) for the second loading case, 

as shown in the Figure 2(b). 
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Figure 3.Moment-curvature relation for the case of 2.06% drift of top structure with 

rectangular cross section  (material with and without hardening) 

 

It can be seen from the Fig 3 how hardening affect material behavior in cross section. 

These curves adequately represent Masing law. It can be seen from the Fig 3 that 

hardening in material significantly influenced on increase of moment and curvature in 

both directions.  Presented diagrams correspond to section A-A from figure 2(a). That was 

the section with with highest stress level during loading and its section forces were used 

in the numerical analyis, as parameters  that deteremine convergence of process. 

Displayed figures present effects of increased number of elements and integration points 

(in cross section).  

Increased number of integration points lead to converging solution, but function of errors 

is not always monotone, as it can be seen in the Figure 4(b). 

For the first loading case (drift 1.06%), it can be said that adequate accuracy is obtained 

with 30 (I cross section) and 10 (rectangular cross section) sub-elements per frame with 

second level of mesh densinty. On the other hand, for the higher level of loading (2.12%), 

it was needed 30 (I cross section) and 30 (rectangular cross section) elements per frame 

and third level of mesh densinty.  

Note that convergent result could be obtained with less frame divisions and integration 

points if distribution of divisions would be imposed around nodes where plasticity zones 
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occur. In the displayed figures, errors are estimated in comparing to the exact solution. 

This solution is obtained when increasing number of frames and integration points in cross 

section did not affect the result of the numerical analysis.  

It can be said that this solution adequately models corresponding effects and results that 

would have been obtained by distributed plasticity method. 
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Figure 4.Convergence of results expressed through varying level of load (drift 1  and 2), 

and level of mesh density of integration points (level 1-3):(a)I cross 

section;(b)Rectangular cross section 

 

These facts are expected, considering the number of elements (nodes) that enter plastic 

zone. In the second loading case (drift 2), large zones of structure and significant zone in 

cross section (Figure555(b)) had plastic deformation, causing higher number of iterations 

and, consequently, increased CPU time needed for performing calculation. For example, 

in the second loading case, plastic deformation occurred in about 40% of the most stressed 

frame element for both cross section types, while only 60% remained in the elastic state 

(Figure 6). 

 
 
 

Figure 5.(a)Number of iteration performed during numerical analysis;(b)Plastification 

in section A-A in second loading case (drift 2) 
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In the Figure 4, there are above mentioned dependancies presented. It can be seen that 

increased number of frame element was essential parameter that influenced process to  be 

convergent. However, number of integration points is also important, since for the coarse 

mesh of integration points, solution is hardly achieved even for high number of frame 

divisions. 

Number of elements that entered plastic zone (Figure 6) directly caused higher number of 

iterations (Figure 555(a)), which needed to be performed in order to redistribution of nodal 

forces to result in convergent solution.  It should be noted that each iteration does not 

demand equal amount of cpu time within structures that have only 1 element per frame in 

comparing to structures which elements are divided on large numbar of sub-elements in 

order to obtain exact solution. Therefore, computational cost for structures that have large 

number of sub-elements that enter plastic zone is even greater than number of iterations 

indicate. 

 
Figure 6.Zones of plastification in structure determined in first (drift 1) and second (drift 

2) loading case (a)Structure with I cross sections;(b)Structure with rectangular cross 

sections 

 

In the corresponding numerical examples where no hardening in material is defined, 

similar trends relating convergence and numerical efficiency were observed. The only 

difference is that absence of hardening caused higher computational effort and higher 

number of iterations that needed to be performed in the analysis. Plastic zones across the 

frame elements also increased and overall structural behavior with  corresponding amount 

of material nonlinearity became even more questionable. 

 

 

4. CONCLUSION 
 

In this paper, three-dimensional frame structures are analyzed during cyclic loading. 

Plastic deformation occurrence were restricted to nodes, hence method of distributed 

plasticity could only be approximated with division of frame elements. Material behavior 

is defined by using Preisach model of hysteresis, which has shown its advantages in 

application in cyclic plasticity. It is shown that convergence and CPU time needed for 
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performing the analysis greatly depend on loading level, and consequently on occurrence 

and size of zones of plastic deformation in cross section or in number of nodes in frame 

sub-elements. Convergent solution, for the cases of significant plasticity zones in frame 

elements, was achieved at the cost of high number of frame divisions and consequently 

increased CPU time. In those cases number of integration points was less important 

parameter of convergence. However, large plastic zones in frame are nor practical, nor 

desired effect in structural analysis. One would expect that plastic deformation remain 

localized in smaller areas in the cases that are relevant in structural analysi. In such cases, 

as presented in this paper, it can be said that use of concentrated plasticity method is 

justified form both standpoints of numerical accuracy and computational cost.  
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ПРОСТОРНЕ РАМОВСКЕ КОНСТРУКЦИЈЕ ПРИ 

ЦИКЛИЧНОМ ОПТЕРЕЋЕЊУ 

 
Резиме: У овом раду је приказана анализа тродимензионалних рамовских 

конструкција при цикличном оптерећењу. У нумеричким примерима, за попречне 

пресеке елемената рамовских конструкција изложених различитим случајевима 
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оптерећења, су коришћени правоугаони и I попречни пресеци. Еластопластично 

понашање материјала је засновано на Прајзаковом моделу хистерезиса Приказани 

су неки аспекти конвергенције, као и нумеричке перформансе прорачуна. 

 

Кључне речи: рам, циклично оптерећење, хистерезис 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


