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Summary: By using Pontryagin's maximum principle we determine the optimal shape of
an elastic column. The column is loaded by a compressive force and positioned on
elastic foundation of Winkler type. We assume that column is clamped on one end and
elastically supported on the other. The optimality conditions for the case of bimodal
optimization are derived. For moderate value of foundation rigidity and support
constant we obtained different post-buckling modes.
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1. INTRODUCTION

The problem of determining the shape of a column, of given volume that is the strongest
against buckling, is an important engineering problem. It was formulated by Lagrange
[1] and is now known as the Lagrange problem. For the historical account of the
Lagrange problem see, for example, [2] and [3]. For a column on elastic, Winkler type
foundation the problem of determining the optimal shape was treated in [4] and [5].

A bimodal optimization procedure was formulated in [6] and [7] for the column without
elastic foundation, and with the boundary conditions that we use (both ends clamped). A
number of important problems of structural stability are characterized by multiple
buckling modes associated with the same critical load. For such problems the initial
post-buckling behaviour is considerably more complicated with problems with simple
(unimodal) bifurcation points. The stability boundary and post-buckling behavior of an
elastic rod with spring supports at clamped ends is determined by Glavardanov and
Maretic in [8].Our goal in this work is to determine post-buckling behaviour of an
optimally shaped column. Thus, we shall first determine the optimal shape of a column
that rests on a linearly elastic (Winkler) foundation with clamped-elastic supported ends
and then its post-buckling (deformed) shape.

2. MATHEMATICAL FORMULATION

Consider a column of length L shown in Figure 1. The column is clamped at one end and
elastically supported on the other end, with end C having the possibility of sliding along
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the x axis. At the end C the column is loaded by a compressive force F. The column is
positioned on a Winkler type of foundation. Equilibrium equations for the column are,
the geometrical and constitutive equationare [9]

dH dv dM .

s =0, s =—0y, s =-Vcos@+Hsing, "
ax dy . B %

E—cose, s =singd, M =El S

where gqy= -4y and x> 0 is a constant stiffness of the foundation, H and V are
components of the contact force (i.e. the resultant force in an arbitrary cross-section)
along x and y axes, respectively, M is the bending moment, € is the angle between the
tangent to the column axis and x axis of a rectangular Cartesian coordinate system x-B-y
and S is the arc-length of the column axis measured from the origin of the coordinate
system B.
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Figure 5. Coordinate system and load configuration

In Eq.(1) we used X and y to denote coordinates of an arbitrary point on the rod axis in

the coordinate system x-B-y, E is modulus of elasticity and 1 is the moment of inertia of
the cross-sectional area. Equations (2), (3) correspond to the classical Bernoulli-Euler
rod theory. The boundary conditions for the column shown in Figure 1. are

y(0)=y(L)=0, 6(0)=0, )
M(L)=-k0(L), H(L)=-F, @)

where ka is spring constant of the support. Solving Egs.(1)12 and by using Eq.(2)s we
obtain H =—F.
The volume of the column is

A(S)ds, ©)

where A is the cross sectional area. We assume that | =@A?, where « is a constant.

There are other possibilities to assume this relations. For a circular cross-section
a =1/4r . By introducing the dimensionless quantities
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we obtain from Eqgs.(1), (2)

m

V=An, Mm=-vcosd—A,sind, ¢ =cosé, 7 =sinb, 9’:a2, (5)
subject to
¢(0)=0, 7(0)=0, »(1)=0, 6(0) =0, m()=-ko(), (6)
where (7): L(-) The dimensionless volume becomes
w=[la(¢)de. Y

The system (5), (6) has a trivial solution 6, =7, =v, =0, ¢, =t, for all values of load
parameter 4, and stiffness parameter 4, . To determine (4;,4,)e R? for which there is

a nontrivial solution to (9), (10) we write v=Vy +Av,.., 8 =6, +A0 where Av,....A0

are perturbations. By substituting this into Egs. (5), (6) and by neglecting the higher
order terms in perturbations, we obtain (after omitting A in front of Av etc.)

V=g, M=—v-1,0, =0, 7=6, éza—”;, ®)
subject to
7(0)=0, n(1)=0, 6(0)=0, mQ) =-ko(). (9)

A necessary condition that system (5), (6) has a nontrivial solution (i.e., loss of stability
of the column by buckling) is that (8), (9) has a nontrivial solution. In [10] we showed
that the multiplicity of an eigenvalue for the system (8), (9) can be at most two.

We assume that the cross sectional area a(t) belongs to the set U called the set of
admissible cross sectional area functions. In what follows we assume that U is the set of
twice continuously differentiable functions on the interval [0,1], i.e., U=C?(0,1) that
are nonnegative a(t)> 0.

Suppose now that (4,4;) e R2 is given (for chosen k). We define the optimal
compressed column on an elastic foundation with clamped-elastically supported ends as
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the column so shaped that any other column of same length (in our case equal to one)
and smaller volume will buckle under load and foundation characterized by (4;,45).

Thus, the problem of determining the shape of the optimal column may be,
mathematically, stated as:

Given (4,4,)=(4,4;), find a*(t) e U such that the integral (7) is in minimum for
a*(t) eU among all those a(t)e U such that when a*(t) is used in Egs. (8), (9) the
values (4;,4,) determined from Egs. (8), (9) are equal to (4, 4) .

3. METHOD OF OPTIMIZATION
In order to apply the Pontryagin's maximum principle we introduce new dependent

variablesas x =7, X, =6, X3=V, X, =m.Then, the system (8), (9) becomes

) X, )
X =Xy, X2:¥1 Xg =X, Xg =—X3—AXp, (10)

and

%(0)=0, x(1)=0, %(0)=0, x(1)=—-ke (1) (11)

In terms of the optimal control, the Problem now becomes: Given (4;,4,) find the

N . s 1 . . .
control  a*(t)eU such that min | :r;llgfoa(t)dt:joa (t)dt if the system is
subjected to (9), (10). Suppose now that for given (21,/12) and for the optimal

a(t)=a"(t) the linear boundary value problem (10), (11) has two linearly independent
solutions, (%,..X,) and &,..&%, corresponding to two buckling modes. Since both

solutions correspond to the same (21,12) and a(t)=a"(t) we have (see [10])

. . Y4 - — = —_ -
1 =X, Xo=— Xg=AX, X=-X%-4X,

8 (12)
T e T T e Rt
satisfying
%(0)=%(1)=%(0)=0, % (1)=-k (1), 13)

%(0) =% (1) =% (0)=0, % (1) = k% (0),
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To determine a*(t) we use the standard procedure of Optimal control theory (see [11]).

Thus, we form the Pontryagin's function H , taking into account that differential
constraints are given by Egs.(12). Therefore

__  _X o _ _
H=a+pX + pa—§+ P3aXy + Pa (=X — %2 )

. (14)
+Pi%o + f)a—;+ Psify + Pa (=% — A%z )
where the costate variables p;, p;, 1 =1...,4 satisfy
- oH _ - oH _ _
=——=—PA, =——=-P; + ,
P %, Psh P2 &%, P+ 2,0
5o H _5 5= M _ P
Ps = %, Pa 4 X, a2’
(15)
R T TR PN
B R P31 2 %, ! 45
: _ OH i OH Py
Ps = s Pa. P4 2, a2
subject to
p3(0)=0, Pps@ =0, Ps(0)=0, Po(1) =kps(D), (16)
P3(0) =0, Ps() =0, Ps(0)=0, Po(1) =kps(D),
The optimality condition miLrJ1 H leadsto
ae
oH Xy o Ry
5_1_2'02?_2'02?:0' 17)
By solving (17) for a we obtain
* A s\ U3
a=a =[2(p%,+P%)] . (18)

In order to reduce the dimension of the system, we proposed in [2] the identification of
state and co-state variables as
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P = PuXs + Pk P2 = BuXs + Pioka;
P =—fuX — B%  Pa=—PuXe — Pk,
P = ParXs + PoXa; P2 = BarXy + ProXa;
P3 = —LorXs — PoXt;  Pa = —ParXo — ProXe,

(19)

where B, i, j =1,2 are constants. Note that with (18) cross sectional area becomes
a(t)=a (t)= [2( 711(%)? + 201258 + 722 (%4 )° )] v, (20)

where y11 =B 712 = (B2 + B )1 2, 22 = oz
Also from Eq.(20) it follows that a(t)z 0. Therefore, we conclude that the optimal shape

of the column is determined from (20) when (10), (11) is solved. Thus, the relevant
system of equations is

[2(711 (X )2 + 212X R4 + 722 (R )2 )} 23

X3 =A%, X4 =-%X—4X,,

% (1)

[2(711 (74 )2 +2y15%4 Ry + V22 (24 )2 )} 23

subject to (13).

4. POST-BUCKLING BEHAVIOUR

We now study the initial post-critical behavior of an optimally shaped column. Our
solution procedure is as follows:

1) We solve Egs. (12),(13) for (ﬂiﬂ;) and chosen value of parameter k to
determine a(t). The values of (ﬂi, /1;) where so determineted that w = 1.
2) With so obtained a(t) we solve Egs. (5), (6) for (4, 4,,k).
4.1.Numerical results

First, we consider column on elastic foundation for 4 =300, ﬂ§=51.8115, and

11 =1 ¥ =36, >, =1. Parameter of spring support constant is k = 0.1. Buckling
modes are shown in Figure 2.
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Figure 2. Buckling modes and cross-sectional area of the column

4 =300,4, =51.8115,k =0.1

Cross-sectional area is shown on the right side of Figure 2. Maximum value of cross-
sectional area is @, =1.41697719 and a(l) =0.1181631332. Post-buckling

configurations for the case 4, =300, k = 0.1 are shown in Figure 3.
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Figure 3. Post-buckling modes for the case 4 =300, k =0.1

a.) 22 = 50, b) 22 = 52, C.) 12 = 52

We obtained post-critial buckling mode for A4, =50 (showen on Figure 3.a.))
coresponding to first buckling mode.
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Figure 4. Buckling modes and cross-sectional area of the column
A =300, 1, =62.3075, k=5
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Super-crical buckling mode obtained for A, =52are showen on Figure 3.b.)

(coresponding to second mode). Buckling mode on Figure 3.c.) do not bifurcate from the
trivial state.
In next example we treated column on elastic foundation with parameter of foundation

J; =300, parameter of axial force A, =62.3075 and y; =1 7 =3.6, 1, =1.

Parameter of spring support constant is k =5. In this case we have bimodal solution.
Buckling modes and cross-sectional area are shown in Figure 4. Maximum value of
cross sectional area IS an, =1.41435651. Post-buckling shapes for the case

A1 =300, k =5 are shown in Figure 5.
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Figure 5. Post-buckling modes for the case 4 =300, k =5

a)l, =60, b.)A, =64, c)i, =64

We obtained buckling mode for 1, =60 (showen on Figure 5.a.)) coresponding to first
buckling mode. Super-critical buckling mode obtained for A, =64 are showen on Figure
5.b.) . Buckling mode on Figure 5.c.) do not bifurcate from the trivial state.

Last example treat column with no elastic foundation (4 =0) for 4, =38.9622, and
=1 y» =36, y, =1. Parameter of spring support constant is k =5. Buckling

modes and optimal cross-sectional area are shown in Figure 6. Maximum value of cross
sectional area is &, =1.40097664 .
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Figure 6. Buckling modes and cross-sectional area of the column
A4 =0, =38.9622, k=5
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Post-buckling shapes for the case 4 =0, 4, =40, k=5 are shown in Figure 7. We
obtained post-buckling shape corresponding to first, second and combined modes.

0.15 0.1 T T
0.08
0.1 0.06
0.04
0.05 0.02
0
0702 04,06 08 1 %o 02 04,06 08 1799% 02 04,06 08 1

Figure 7. Post-buckling modes for the case 4 =0, 4, =40, k=5

5. CONCLUTIONS

We studied the post-critical behaviour of optimally shaped columns on elastic
foundation of Winkler type. Our main results may be stated as:

1.) Inall cases we have bimodal optimization.

2.) For constant value of foundation rigidity and various value of spring support
constant we obtained three different post-buckling modes corresponding to first,
second and buckling mode that do not bifurcate from the trivial state. These
results are in agreement with the results presented in [13].

3.) For the column with no elastic foundation and k =5 we obtined only super-
critical buckling modes coressponding to first, second and combined modes.
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HOCIEKPUTUYHO ITOHAIIAILE OIITUMAJIHO
OBJIMKOBAHOI' EJACTUYHOI' LITAITA

Pesume: Kopuwherwem [lonmpujacunosoe npunyuna maxcumyma oopehen je
onmumaniu o6nux eiracmuynoz wmana. Illman je onmepehen axcujarnom curom
NPUMUCKA U HAA3U CA HA eL1ACmuyHOj noonosu Bumkieposoe muna. Ilocmampamo
wman yKkiewmeHn HAa jeOHOM U elaCmUYHO OCILOReH Ha OpyeoM Kpajy. Mzeedenu cy
VCI08U ONMUMATIHOC 34 Cy4aj dumodanHe onmumuzayuje. 3a pasiuyume epeoHOCmu
Kpymocmu nooioze u OCJIOHAuKe KOHCmanme oopelenu cy pasiudumu noCieKpumudHu
obnuyu.

Kunyune peuu. Cmabunnocm, eracmudna nooio2a, ONmMuMaiiy 001Uk, ROCIeKPUMUYHO
noHaularbe
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