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Summary: Over the last few years, scholars have revisited the classical issue of 

identifying the limit equilibrium states of the symmetrical masonry arches of different 

shapes and corresponding theoretical minimum thickness, when subjected to self-weight. 

More than century ago, Serbian scholar Milutin Milankovitch in his remarkable work set 

the complete and correct theory of thrust line for the equilibrium of the arch of general 

shape, and computed the minimum thickness of semicircular arch. Although pointed 

arches, beside circular and elliptical, are very common in historic structures, 

particularly in Gothic architecture, the lack of information about their structural 

behaviour according to thrust line analysis is noticeable. 

In this paper, the characteristic elements of analysis, as well as computation, such as 

eccentricity, being the measure of pointedness, or the position of the application points 

of relevant forces, which diverse the pointed from semicircular arches, have been 

noticed. Furthermore, radial stereotomy, which assumes that joints between voussoirs 

are concurrent to the centre of the arch, considering both incomplete and overcomplete 

arches, is employed. Accordingly, the analytical expressions of the arch ring area and 

its centroid are provided, and, after equilibrium i.e. static approach, expression for the 

thrust line has been derived. Hence, it represents the basis for the various computational 

analyses of the mechanical behaviour of Gothic masonry arches, as well as other types 

of circular based arches and vaults containing the pointed crown. 
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1. INTRODUCTION 
 

More than century ago, Serbian scholar Milutin Milankovitch in his remarkable, but for 

a long period nearly unknown work [1] (see [2] as well) set the complete and correct 

theory for the equilibrium of the masonry arch of general shape. He upgraded and 

exceeded preceding researchers, mainly architects, engineers and mathematicians, who, 

since the 18th century, in order to predict and prevent possible collapse of vaulted 

masonry structures, have developed various models applied in the stability and safety 

analysis (for more information  see [3], [4]). Milankovitch considered the equilibrium of 

an arch on the assumptions about the material behaviour made from Couplet [5] onward: 

masonry has no tensile strength, it has infinite compressive strength and sliding cannot 
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occur [3]. Furthermore, he followed the thrust line concept introduced in the 19 th century 

(e.g. [6]), where thrust line (Milankovitch: Druckkurven) represents the load path, being 

the locus of the application points of the resultant thrust forces developed at the joints 

(beds) between the voussoirs of the arch. Milankovitch introduced in the computation 

the true location of the centre of the gravity of each ideal, generic voussoir, which was 

until then assumed to be located along the centreline of the arch. Hence, after remarkable 

mathematical elaboration, he was the first who gave the correct solution for the 

minimum thickness of semicircular arch of constant thickness subject to its own weight. 

In addition, he considered the different types of stereotomy, i.e. the direction of generic 

sections (joints), showing the multiplicity of limit thrust lines (see [7]). 

Recently, few scholars have revisited the classical issue of identifying the limit 

equilibrium states of the symmetrical masonry arches of different shapes and 

corresponding theoretical minimum thickness, when subjected to self-weight (e.g. [8], 

[9]). Although pointed masonry arches, beside circular and elliptical, are very common 

in historic structures, particularly in Gothic architecture, their structural behaviour 

according to thrust line theory has not been researched in sufficient detail. However, in 

[10] the geometric framework is set, and the aim of the present paper is to provide a 

more detailed consideration on the line of thrust and its analytical expression. Hence, 

employing radial stereotomy (directions of the joints between voussoirs are concurrent to 

the centre of the arch, as used in Italian pointed arches), the characteristic elements of 

analysis, as well as computation, such as eccentricity, being the measure of pointedness, 

or the position of the application points of relevant forces, which diverse the pointed 

from semicircular arches, have been noticed, and are presented in the following section. 

 

 

2. PARTICULAR GEOMETRIC PARAMETERS OF POINTED ARCH 
 

Due to the symmetry of the arch, in the following discussion only half-arch is 

considered. In Fig. 1 (a) relevant geometrical parameters are shown: R and t denote the 

mean radius and the thickness of the arch ring, respectively. The minimum value of 

thickness to radius ratio, t/R, represents the minimum possible thickness of the arch 

normalized by the radius. Further, the value e, which measures the deviation from the 

circular shape, is the horizontal distance between the circular axis’ centre O and the 

centre C of the pointed arch. The angle α represents the angle of embrace, which is the 

complement of the springing angle, and arches can be incomplete (segmental) or 

overcomplete (horseshoe), if this angle is less or greater than 90°, respectively. The 

substantial parameter of pointed arch is its eccentricity, being the measure of 

pointedness, and following [11] represents the ratio between e and the difference 

between R and e. Thus, arches can be slightly pointed (drop, depressed or obtuse arch), 

or strongly pointed (also known as lancet, acute or narrow pointed arch). The angle φ is 

angular coordinate measured from the vertical axis of the symmetry of the arch, which 

defines the generic section. Thrust line cannot be pointed, in the absence of concentrated 

loads [11], and therefore cannot pass through the extrados at the crown, as opposed to 

the circular arch. Hence, the parameters of particular importance are the application 

points B and S of the horizontal thrust H acting at the crown joint, and the reaction force 

R acting at the springings, since, among the eccentricity by default, their position affects 
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the position of thrust line through the arch [10] and therewith the value of horizontal 

thrust, changing the location of critical sections as well. 

 

 
 

Figure 1. (a) Geometric parameters of pointed arch, (b) free-body diagram of the top 

portion of the arch with corresponding thrust forces acting on it, (c) force polygon [12] 

 

The rigid arch is indeterminate to the third degree such that for any arch there is a family 

of possible equilibrium solutions, which can be visualized with lines of thrust obtained 

through graphical statics methods [11]. Accordingly, the force polygon expresses 

graphically the equilibrium of the system; the lines of action of the resultant thrust forces 

generate the funicular polygon, and the lines of action of the weights of the voussoirs 

meet at the corners of the funicular polygon to satisfy moment equilibrium (see [7]). 

 

 

3. DERIVATION OF THE EXPRESSION FOR THE THRUST LINE 

THROUGH GOTHIC ARCHES 
 

As pointed out by Milankovitch [1], the explicit equation of the line of thrust could be 

directly obtained without deducing the differential equation and then integrating it, when 

it is possible to find the analytical expression of the resultant load and its point of 

application for a finite portion of the system [2]. Thus, along with the usual assumption 

that specific weight of the masonry and the depth of the arch have unit value, for the 

sake of simplicity, the problem of the stability of arch can be reduced to purely 
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geometrical task. Namely, a self-weight of the arch or its portion is substituted by the 

area of the arch ring, limited by extrados and intrados curves as well as by the particular 

joints between voussoirs, and is applied in the centre of gravity i.e. in the centroid of the 

limited area. Accordingly, knowing the weight W being the area of the half-arch as well 

as the centroid of the area, and assuming the application points B and S of the forces H 

and F, respectively (see Fig. 1 (a) and (c)), from rotational equilibrium about the 

springing hinge S, one can determine the value H of horizontal thrust, given by the 

following expression: 
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and the abscissa xW of its centre of gravity is given by:  
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(3) 

 

Furthermore, two boundary conditions defining the positions of application points B and 

S, i.e. the distance of the thrust line from the centre of the arch at the crown and 

springings, ρ0 and ρα respectively, are as follows: 
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whereas d=e cot(α); qc is the radial distance between the point of application of the 

horizontal thrust and the crown at extrados, and qs is the radial distance between the 

point of application of the reaction force at the springings and the extrados, as shown in 

Fig. 1 (a). Further, the resultant thrust T at generic section at the angle φ together with its 

point of application A is uniquely determined from the force and moment equilibrium, 

either graphically with the force polygon (see Fig. 1 (b) and (c)) or analytically by 

solving equilibrium equations. Thus, from rotational equilibrium about point A follows: 
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whereas, in accordance with Fig. 1 and after [12], the weight V(φ) of the finite portion of 

the arch up to generic section at the angle φ, represented by the area of corresponding 

arch ring, and its centre of mass xV(φ) i.e. the centroid of that area, are given by Eq. (7) 

and Eq. (8), respectively: 
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In Eqs. (7) and (8), Rex=R+t/2 and Rin=R-t/2 are radii of extrados and intrados circle, 

respectively, and the quantities xrex, xrin, yrex and yrin are the abscissas and ordinates of the 

extrados and intrados of the arch, as one can see in Fig. 1 (a). Finally, from Eq. (6) one 

can solve distance ρ between the thrust line and the centre of the arch, obtaining the 

following closed form expression for the thrust line of pointed arches (expressed in 

Cartesian coordinates and traced with dashed line in Fig. 1 (a) and (b)): 
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whereas the H, ρ0, V and xV are given by Eqs. (1), (4), (7) and (8), respectively 

(substituting these expressions into Eq. (9) one can obtain expanded expression for the 

line of thrust, not shown here because of the length of the solution). Hence, for each 

generic section, the distance of the thrust line, i.e. of the application point of the resultant 

thrust force, from the extrados and intrados, can be computed, and the critical sections 

regarding the joints where the thrust line approaches closest to the arch boundary can be 

detected. 

 

 

4. FINAL REMARKS AND CONCLUSIONS 
 

Serbian scholar Milutin Milankovitch was the first who provided the complete theory of 

thrust line, with the correct mathematical elaboration concerning the true location of the 

centres of gravity of generic voussoir, for the equilibrium analysis of the arch of general 
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shape. Recently, this theory has been revisited in the analysis regarding elliptical arches. 

However, the application to pointed arches has not been considered. 

Therefore, in this paper, the characteristic elements of analysis, as well as computation, 

such as eccentricity, being the measure of pointedness or the position of the application 

points of relevant forces, which diverse the pointed from semicircular arches, have been 

noticed. Hence, after equilibrium i.e. static approach and employing radial stereotomy, 

concerning both incomplete and overcomplete pointed arches, the analytical expression 

for the thrust line has been derived. Therefore, it represents the basis for the various 

computational analyses of the mechanical behaviour of Gothic masonry arches, as well 

as other types of circular based arches or vaults containing the pointed part. Inspecting 

the different values of the eccentricity and embrace angle, critical sections with 

appropriate collapse modes can be identified, enabling the detection of the minimum 

thickness and corresponding thrust values. In addition, different types of exercised 

stereotomy, such as vertical or normal, remain to be considered. Moreover, regarding the 

further possible developments of the present research, appropriate iterative procedures 

and computer codes can be developed in order to enable the extensive elaboration of the 

problem as well as to provide the complete insight into the matter.  
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БЕЛЕШКА О МИЛАНКОВИЋЕВОЈ ТЕОРИЈИ 

ПОТПОРНЕ ЛИНИЈЕ ПРИМЕЊЕНОЈ НА ГОТСКЕ 

МАСИВНЕ ЛУКОВЕ 

 
Резиме: Током последњих неколико година, научници поново обрађују класична 

питања одређивања стања граничне равнотеже симетричних масивних лукова 

различитих облика, те њихове одговарајуће минималне дебљине под сопственом 

тежином. Пре више од једног века, српски научник Милутин Миланковић је у свом 

изванредном раду поставио свеобухватну и исправну теорију потпорне линије 

намењену анализи равнотеже лука општег облика, те израчунао минималну 

дебљину полукружног лука. Иако су преломљени лукови, поред кружних и 

елиптичких, веома заступљени у историјским структурама, посебно у готској 

архитектури, приметан је недостатак информација о њиховом понашању према 

теорији потпорне линије. 

У овом раду су уочени карактеристични елементи анализе и прорачуна који 

разликују преломљене од полукружних лукова, као што су ексентрицитет као 

мера преломљености лука, или положај нападних тачака релевантних сила. Осим 

тога, примењена је радијална стереотомија, којом се претпоставља да су 

лежишне спојнице између сводних каменова конкурентне с центром лука, 

узимајући у обзир и сегментне и потковичасте лукове. На основу тога су дати 

аналитички изрази за површину и тежиште прстена лука, те је према статичкој 

анализи изведен израз за потпорну линију. Тиме је постављена основа за 

различите рачунарске анализе механичког понашања готских масивних лукова, 

као и других кружних лукова и сводова који садрже преломљено теме.    

 

Кључне речи: преломљени лукови, статичка анализа, Милутин Миланковић, 

теорија потпорне линије 

 

 

 

 


