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Summary: Numerous methods and procedures have preceded successful modeling of 
flow in physical domains of complex geometry by the lattice Boltzmann method (LBM). 
Common to these methods is partial deviation from the basic structure of the LBM, 
resulting in deterioration of accuracy, stability, simplicity and ease of application.  In 
order to minimize the drawbacks as much as possible, a form of LBM based on the 
principles of the classical CFD with complete transformation of the 2D equations of flow 
in curvilinear coordinates is proposed in. Suitable forms of the local equilibrium 
distribution function and of the force term have been developed for the corresponding 
set of equations, which has been solved by the standard LBM using the original form of 
the boundary conditions. In order to eliminate the drawbacks of this approach coming 
from the use of finite difference method in modeling some of the terms, an improved 
method is outlined as follows. The transformed set of equations of 2D flow – including 
the Navier-Stokes equations and the shallow water equations – is introduced in a form in 
which all terms are compatible with the basic structure of the LBM. This results in 
higher accuracy, while the simple structure of the method and its efficiency is 
maintained. The benefits of the proposed approach are demonstrated by three test 
examples. The results of the proposed method are compared with the analytical solution, 
with results obtained by a laboratory model and with the results of other numerical 
methods. 
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1. INTRODUCTION 
 
The advantageous features of the lattice Boltzmann method (LBM) are reflected in the 
ease of implementation of a wide range of flow related physical processes including 
transport of suspended and dissolved substances, multiphase flow and so on. In addition, 
performance improving applications (like parallel processing) can be easily combined 
with the method, providing high computation efficiency. These are the practical reasons 
for why the LBM has become the tool of choice for an increasing number of researchers. 
Furthermore, the problems associated with classical numerical methods (finite difference 
method, finite volume method) are significantly reduced or even completely eliminated 
by the LBM. These include difficulties in modeling of advection, dealing with complex­
shape flow domains and application of boundary conditions to the curved boundaries. 
However, with the application of the LBM to a continuously expanding range of flow 
related problems (river hydraulics, chemical industry) a need for adjustments in order to 
increase the capacity of the method has emerged. 
It has been recognized that the method of application of the boundary conditions plays a 
key role in producing an accurate and stable final solution, for that significant effort has 
been invested in the LBM to make it more suitable for modeling flow domains with  
difficult boundaries. In this respect there are two distinctive groups of the LBM. The first 
group includes procedures which solve complex flow domains by means of non­uniform 
calculation meshes. Using the experience gained by the classical CFD, a group of 
authors [1, 2, 3] has developed a method based on solving the partial differential lattice 
Boltzmann equations transformed into a curvilinear coordinate system using classical 
numerical procedures. The obvious drawback of this approach is in getting farther from 
the essential principals of the LBM while introducing the well­known problems 
associated with the procedures of the classical CFD.  The procedures of the second 
group utilize a uniform calculation mesh. In this case the expressions describing the 
boundary conditions need to be corrected whenever the direction of the boundary 
segment does not comply with the direction of the calculation axis. Filippova and Hänel 
[11] have proposed a method for the calculation of the unknown distribution functions, 
subsequently modified and improved by [5, 6]. All of the listed methods have a negative 
effect on the essential characteristics of the LBM in regards to efficiency, accuracy and 
stability. In order to get rid of the listed drawbacks, an improved LBM is proposed here 
for modeling flows in physical domains of complex geometry. A revised transformation 
compared to that one described in [7] and writing the free terms as proposed in [8] have 
reduced the force term, increased the efficiency of the method and improved the 
accuracy of the final solution.  
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2. THE MATHEMATICAL MODEL 
 

2.1. Complete transformation of the 2D Navier-Stokes equations in a 
curvilinear coordinate system 
 
The system of 2D Navier­Stokes equations as well as the shallow water equations 
describing flow in the physical domain in Cartesian coordinates can be transformed into 
a curvilinear coordinate system of the computational domain in two ways. The first 
approach is based on partial transformations between the physical and the computational 
domain. By transforming the independent variables only, the metrics between the 
physical and the computational domain become established, while the Cartesian 
components of the dependent variables are maintained.  Another approach, the method 
of complete transformation, has been adapted for the LBM proposed in this work [9]. 
Both the independent and the dependent variables are transformed.  
 
2.2. Application of the Lattice Boltzmann method on the system of 
equations transformed into a 2D curvilinear coordinate system 
 
The concept of the LBM is based on modeling of the evolution of the distribution 
function of particles, using the Boltzmann equation of the discrete phase­space system. 
Defined over a square lattice domain (Fig. 1), the discretized Boltzmann equation is 
written as: 
 

     1 eqf e t ,t t f ,t f f F t Z ,       


                                                       (1) 

 
where e=/t=/t are the components of velocity e in  and  directions 

(Fig. 1), defined in a D2Q9 model as: 
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In equations (1) and (2)  and  are lattice sizes in  and  directions (in case of a 
square lattice  =), f is the distribution function of particles at the  link, feq is the 
local equilibrium distribution function,  is the location vector in the 2D curvilinear 
domain defined as =(,), t is time and t is the time step. F is defined as force, while 
Z is an additional element in modeling free terms of the LBM [8]. 
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Figure 1. The calculation domain of the LBM in case of the D2Q9 square lattice model 

 

2.3. The completely transformed 2D Navier-Stokes equations 
 
In order to accommodate the LBM for modeling domains of complex shape utilizing the 
system of equations transformed into a curvilinear coordinate system, the local 
equilibrium distribution function needs to be defined initially. Based on the form of the 
equilibrium function given in [4], the first­hand version of the local equilibrium 
distribution function is proposed here for the 2D Navier­Stokes equations completely 
transformed into a curvilinear coordinate system:  
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where terms 
22 22y x y x G GB ,B ,B ,B ,C ,C ,

      11GC  and 
11GC  are exclusively the product of 

geometrical transformations between the physical and the computational domain, using 
the finite difference method: 
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Force term Fα comprises the leftover of advection, Sx and Sy, as well as terms on the right 
hand side of the continuity equation. Terms Eξ and Eη are defined as:   
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Force term Fα requires special treatment in the LBM. Accordingly, it is modeled here 
using the semi­implicit form of the centered scheme, which is second­order accurate in 
space and first­order in time [10]. The last group of terms is modeled as 
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Parameter  providing stability to equations (3) and (7) is defined by Zhou [4]  
 

1 0min , . .
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Applying the Chapman­Enskog analysis [24] to expressions:  
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results in a relationship between pressure and density in the form of p=2ρωeξeη. 

The same analysis shows that the proposed model is constrained in terms of relaxation 
time. In case of a square lattice the kinematic viscosity yields:  
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3. VALIDATION 
 

3.1. Open channel flow in a 180° bend 
 
To put the proposed CL­LBM to rigorous verification, a complex example has been 
chosen next; the Taylor­Couette flow between two cylinders (Fig. 2). The inner cylinder 
of radius R1 rotates, while the outer cylinder of radius R2=0.4 m is kept motionless. The 
configuration of the experimental rig as well as the physical flow domain is defined by 
ratio β=R1/R2. Three different cases with β1=0.35, β2=0.5 and β3=0.65 have been 
considered.  
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Fig. 2. Dimensions of the test rig with the details of the calculation mesh and the 
corresponding range of the relaxation time τ for β=0.5 

 
Exploiting boundary conditions developed for the impervious boundaries, tangential 

velocity of clockwise rotation 
1

0 176 t
RW . m s  has been applied to the inner cylinder, 

while the outer cylinder has been kept stationary, 
2

0 0 t
RW . m s . In case of the 

permeable boundaries, like in the first test example, periodical boundary conditions have 
been applied.  In the first set of numerical experiments β has taken three different values 

while the Reynolds number defined as  
12 1
t
RRe R R W   has been kept constant. The 

adopted value of Re=7.0 for the assumed values of β1=0.35, β2=0.5 and β3=0.65 
supplied viscosity coefficients ν1=0.0065 m2/s, ν2=0.0050 m2/s and ν3=0.0035 m2/s, 
respectively. Fig. 3 shows that for β=0.5 and the corresponding kinematic viscosity 
ν=0.005 m2/s, relaxation time τ is ranging from τ=2.35 by the inner cylinder, up to 
τ=0.99 along the outer boundary.   
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Fig. 3. Comparison of results produced by the CL-LBM to the analytical solution  

in the form of normalized tangential velocities in case of the rotating inner cylinder  
 
The quantification of the discrepancy between the numerical and analytical results is 
given in Table 1. 
 

Table 1 Computational errors for different values of β  

 L L1 L2 
β1 0.011 0.008 0.008 
β2 0.013 0.011 0.012 
β3 0.016 0.015 0.014 

    
   Additional verification of the proposed model has been implemented for the 
configuration defined by β=0.5, by variation of the viscosity coefficient or rather the 
Reynolds number. The aim of this analysis is to quantify the influence of the Reynolds 
number on the accuracy and stability of the numerical model. It is feasible since the 
relative velocity distribution is not dependant on the shear stresses induced. For three 
different Reynolds numbers Re1=7.03 (ν1=0.0050 m2/s), Re2=17.60 (ν2=0.0020 m2/s) 
and Re3=29.30 (ν3=0.0012 m2/s) the corresponding velocity error norms between the 
numerical and analytical solution have been calculated and summarized in Table 2. 
 

Table 2 Error norms in function of the Re number for β=0.5  

 L L1 L2 

Re1 0.013 0.011 0.012 
Re2 0.021 0.016 0.017 
Re3 0.022 0.019 0.021 

 
 

4. CONCLUSIONS 
 
In order to produce a LBM which maintains the basic characteristics of the original 
method without jeopardizing accuracy, and supports modeling of flow in domains of 
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complex geometry, a new form of the LBM is proposed for solving the flow equations 
completely transformed into a curvilinear coordinate system. In accordance with the 
structure and character of the LBM, an appropriate form of the local equilibrium 
distribution function fα, force term Fα and additional term Zα has been produced for the 
system of transformed Navier­Stokes equations and for the shallow water equations as 
well. Using the principals of the classical CFD for modeling flow in complex­shape 
domains (river hydraulics) which means that the physical domain of interest is covered 
by a curvilinear mesh completely adapted to the given geometry, this approach provides 
opportunity for applying boundary conditions in a simple, straightforward way. The 
simplicity of the basic form of the LBM in terms of the corresponding algebraic 
expressions is maintained. This has eliminated the difficulties in cumbersome 
application of the boundary conditions, along with the related errors. Furthermore, 
parallel processing is enabled by the proposed approach. The discrepancy of the 
proposed procedure from the results obtained by three other numerical methods and by 
measurements is quantified. 
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POBOLJŠANA METODA LATTICE-BOLTZMANN ZA 
PRORAČUN 2D PROTOKA U KRIVOLINIJSKIM 

KOORDINATAMA 
 

Rezime: Veliki broj metoda je prethodio uspešnom modeliranju protoka u fizičkim 
domenima složene geometrije metode Lattice-Boltzmann-a (LBM). Zajednička osobina 
svih ovih metoda je parcijalni izvod osnovne strukture metode Lattice-Boltzmann-a, što 
rezultuje pogoršanjem tačnosti i stabilnosti, kao i jednostavnosti primene. U cilju 
minimiziranja nedostataka što je više moguće, predložena je forma LBM zasnovana na 
principima klasične CFD, sa kompletnom transformacijom dvodimenzionalnih jednačina 
protoka u krivolinijske koordinate. U cilju eliminisanja nedostataka ovog pristupa, koje 
dolaze usled upotrebe metode konačnih razlika u modeliranju određenih uslova, 
poboljšana metoda je koncipirana na sledeći način: transformisani set jednačina za 
proračun 2D protoka, uključujući Navie-Stokesove jednačine i Sen-Venanove jednačine 
osrednjene po dubini, su predstavljene u formi takvoj da su svi uslovi kompatibilni sa 
osnovnom strukturom LBM. Ovi rezultati imaju veću tačnost, uz očuvanje jednostavnosti 
strukture i efikasnosti same metode. Prednost predloženog pristupa demonstrirana je 
kroz tri brojna primera. Rezultati predložene metode su upoređeni sa analitičkim 
rešenjem, rešenjem dobijenim na laboratorijskom modelu i sa rezultatima drugih 
numeričkih metoda. 
 
Ključne reči: Krivolinijske koordinate, metoda Lattice-Boltzmann, Navi-Stokesove 
jednačine, Sen-Venanove jednačine osrednjene po dubini 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


