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ABSTRACT: 

The paper analyzes the approximation of the ellipsoid by the sphere. Earth is a space 
body with a mathematically irregular shape, so idealized smooth surfaces are used for 
calculations. The first is the geoid, a smooth, equipotential surface that best 
approximates mean sea level. However, the geoid does not have an analytical form and 
is unsuitable for many applications, so an ellipsoid is used for approximation. In 
applications where high accuracy is not required (e.g., with small scale maps), the 
ellipsoid is approximated by a sphere. The radius of the sphere can be calculated in 
three ways: according to the equivalent volume criterion, according to the equivalent 
surface criterion, or as the mean value of the three semi-axes of the ellipsoid. All three 
methods of approximation were tested by calculating the length of the geodetic line on 
the ellipsoid, the orthodrome on the spheres and then the error. Also, the influence of 
latitude on the error value was tested. For three different values of geographic latitude, 
the lengths of geodetic lines up to one hundred points were calculated (using the 
Bessel method for solving the second main geodetic task on the ellipsoid), as well as 
the lengths of the orthodromes on the spheres, with the radii of the spheres determined 
in the three mentioned ways. The obtained results were then analyzed and discussed. 
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1 INTRODUCTION 

The equipotential surface that best approximates the mean sea level for the entire Earth's 
surface is called the geoid (Figure 1). Gauss defined the geoid as the mathematical shape 
of the Earth and as such it represents a key surface in geodesy, with a particularly 
important role in height positioning. In the first approximation, i.e., to the nearest few 
meters, the geoid represents mean sea level. In the general case, it passes under the 
continents at a depth equal to the height, i.e., at sea level and possesses all the properties 
of an equipotential surface, i.e., surface of constant scalar potential [1]. 

 
Figure 11. Geoid 

Although geodetic measurements are performed on the physical surface of the Earth, that 
surface is unsuitable for mathematical processing and calculations due to its 
geomorphological complexity. Therefore, the calculations are performed on a regular 
mathematical surface after the measurements are reduced to it [1]. The choice of the 
shape of a regular mathematical surface is in principle arbitrary, but for practical reasons 
it is required to be mathematically as simple as possible, and to partly or fully approximate 
the real Earth [2]. The simplest mathematical body whose shape resembles the real Earth 
is a two-axis rotating ellipsoid. It is created by rotating the ellipse around its minor axis [3]. 
Moreover, if the ellipsoid is chosen to approximate the entire Earth, then it is called the 
general (global) Earth ellipsoid [1]. When it comes to a part of the Earth, such as the territory 
of a country or continent, the ellipsoid is called local (Figure 2). 

In some cases, e.g., when studying cartographic projections and the construction of 
cartographic networks for small-scale maps, the flattening of the Earth's ellipsoid can be 
ignored and the Earth can be considered a ball of the appropriate radius. The radius of the 
Earth is determined in several ways [2]. The most commonly applied solutions are: 
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Figure 12. Geoid, local and global ellipsoid 

a) The radius of the globe that has the same volume as the Earth's ellipsoid: 

 𝑅𝑣 = √𝑎2𝑏
3

 (1) 

Where a is the length of the semi-major axis, and b is the length of the semi-minor axis. 

This expression follows from the equations for the volume of the ellipsoid (𝑉𝑒) and the ball 
(𝑉𝑙): 

   𝑉𝑒 =  
4

3
𝜋𝑎2𝑏  (2) 

   𝑉𝑙 =  
4

3
𝜋𝑅3 (3) 

b) The radius of the globe from the equivalent surface of the ellipsoid: 

 4𝜋𝑅𝑝
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Where e is the flatness coefficient and whence follows: 

 𝑅𝑝 = 𝑎√(1 − 𝑒2)(1 +
2

3
𝑒2 +

3

5
𝑒4 +

4

7
𝑒6 + ⋯ )  (5) 

c) The radius of the Earth's sphere can also be determined as the arithmetic mean 
of the three semi-axes of the revolving ellipsoid: 

 𝑅𝑠 =
𝑎+𝑎+𝑏

3
 (6) 

Also, when making geographical maps on a very small scale, even for a relatively large area 
of territory, the Earth can be approximated by a ball with a radius of R ≈ 6 370 km, that is, 
R ≈ 6 371 km [3]. 

A certain number of lines on the ellipsoid and their corresponding lines on the ball have 
special characteristics that are significant for study and analysis in this paper. These are 
orthodrome, loxodrome and geodetic line (Figure 4). 
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Figure 13. System of geographic coordinates on a ball (sphere) 

 
Figure 14. Orthodrome, loxodrome and geodetic line 

A geodetic line represents a curve on a given surface, at each point of which the main 
normal of the curve coincides with the corresponding normal on the surface [3]. The main 
characteristic of a geodetic line is that it represents the shortest line connecting given 
points on any analytically determined surface, and this is its first property [4]. If it is a 
geodetic line located on the Earth's ellipsoid, its second characteristic is that for each of 
its points the product of the radius r of the parallel of the corresponding point and the sine 
of the azimuth of the geodetic line at the same point is constant [3]: 

 𝑟 sin 𝛼 = 𝑁 cos 𝜑 sin 𝛼 = 𝑐𝑜𝑛𝑠𝑡 = 𝐶 (7) 

Where N is the radius along the prime vertical. 

This expression represents Clair's equation of the geodetic line. Due to its characteristic 
property, the geodetic line describes an ellipsoid (Figure 5), but due to the eccentricity of 
the ellipsoid, it does not repeat itself during that cycle [3]. 
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Figure 15. Geodetic line cycle 

The curve on the surface of the Earth's ellipsoid, which intersects all meridians at the same 
angle (azimuth), is called a rhombus [5]. This feature makes it suitable for navigation, as it 
allows traveling (sailing or flying) on it with a constant course. However, it does not 
represent the shortest connection between two points, which means that the journey along 
the loxodrome takes longer and is therefore more expensive [6]. In some cartographic 
projections, the loxodrome is shown as a straight line, which enables its combined use 
with the orthodrome for navigational purposes, with the simultaneous application of the 
feature of the shortest path of the orthodrome and the constancy of the loxodrome course 
[7]. Due to multiple applications, mathematical models are considered, i.e., rhombus 
equations on the ellipsoid, ball and projection plane [8]. 

 
Figure 16. Loxodrome 

The term orthodrome comes from the Greek words ortos-dromos and means a straight 
path. The shortest path between two points is always a part of a circle, on any ball, i.e., a 
shorter arc of the great circle for that ball [6]. 
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2 ORTHODROME 

The orthodrome is defined with the help of imaginary circles on the Earth, which are divided 
into small and large circles, that is, into a small and a large circle [6]: 

a) Great circle - all circles on the surface of the Earth that have a common center at 
the center of the Earth. These are the meridians, the equator and the orthodromes 
(Figure 7). 

b) Small circle - all circles whose center is in the Earth's axis. These are parallels. 

In mathematical cartography, for the shortest distance between two points on the ball, i.e., 
for the arc of a great circle, the term orthodrome (great circle) is used. A great circle is a 
circle on the surface of a sphere, i.e., a ball, which divides the sphere into two equal 
hemispheres and has the same center as the sphere. In other words, a great circle is the 
intersection of a sphere with a plane passing through its center [5]. 

 
Figure 17. A great circle that divides the sphere on two equal parts 

Orthodromes are easily identified on the globe based on lines of longitude and latitude. 
Each line of longitude, or meridian, is the same length and represents half of a great circle 
[7]. This is because each meridian has a corresponding line on the opposite side of the 
Earth, and when these two lines meet, they cut the ball into equal halves, making a great 
circle. The only line of latitude, or parallel, that is characterized as a great circle is the 
equator, because it passes right through the center of the Earth and divides it in half. The 
lines of latitude north and south of the equator are not great circles because their length 
decreases as they move toward the poles, and they do not pass through the center of the 
Earth either. As such, these parallels are considered small circles [8]. 

An orthodrome is a shorter arc of a great circle that passes through two points on Earth 
[6]. Only one orthodrome can pass through two points on Earth. An orthodrome is fully 
defined if the orthodrome length, initial azimuth, start and end points of the orthodrome 
are known (if they are not diametrically opposite, otherwise another point is required). 
Orthodromic length is expressed in degrees, kilometers or nautical miles [8]. As the 
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shortest distance on any analytic surface between two points is defined as a geodetic line, 
the orthodrome is a geodetic line on the globe and is part of a great circle through those 
two points (Figure 8). 

 
Figure 18. Orthodrome on Earth’s ball 

For example, in the Mercator projection, the orthodrome is shown as a rounded curve, 
bulging towards the pole (Figure 9), and on the map, whose projection center is in the 
center of the Earth, it is shown as a straight line [9]. Due to the lengthening of the Mercator 
map, it is not recommended to measure the distances between intermediate points 
directly, because they are large values [10]. The advantage of the map is that on it every 
big circle is shown as a straight line, and because of this, it is very easy to draw the 
orthodrome along which you want to travel. The disadvantage of the map is that you 
cannot read courses or measure distances on it [11]. 

 
Figure 19. Orthodrome and loxodrome in Mercator projection 
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The length of the orthodrome is a very important factor when planning a travel route (e.g., 
sailing plan or flight plan). It is usually associated with savings depending on the 
loxodrome route. The starting point 𝐴(𝜑1, 𝜆1) and the end point 𝐵(𝜑2, 𝜆2) are required 
for calculation, after which the length of the orthodrome, i.e., the shortest distance 
between those two points is calculated according to one of the forms of spherical 
trigonometry, usually using the cosine expression: 

 𝐷𝑜 = 𝑅 ∙ cos−1 𝛼 ⋅ sin 𝜑1 ⋅ sin 𝜑2 + cos 𝜑1 ⋅ cos 𝜑2 ∙ cos Δ𝜆  (8) 

The size 𝐷𝑜  represents the required length of the great circle, i.e., the length of the 
orthodrome, in the unit of measurement of length, the size ∆𝜆 is the difference in the 
longitude of the starting and ending points, and R is the radius of the Earth [5]. 

2.1 APPLICATION OF ORTHODROME 

Orthodrome has been an important part of navigation and geography for hundreds of years, 
and knowledge about it is extensive, i.e., essential for long trips around the world. The first 
disadvantage of the orthodrome is that all meridians intersect at different angles, so 
theoretically one should change course continuously [2]. In practice, along with the 
orthodrome, the so-called intermediate points, and between them one sails along a 
loxodrome, so that one long orthodrome is divided into more or less shorter loxodromes 
[8]. Another disadvantage of the orthodrome is that it leads to high latitudes, often a more 
dangerous area of navigation. In the event that part of the orthodrome is at too wide a 
width and there is a risk of bad meteorological conditions, combined sailing will be chosen, 
i.e., combination of loxodrome and orthodrome. In the case of combined navigation, the 
border parallel over which one intends to sail is mostly determined, and from it and to it 
one sails along the orthodrome, and along it (between the border points) one sails along 
the loxodrome - a special case of parallel navigation [7]. 

Special cases of the orthodrome are sailing along the equator and meridian, and in those 
cases all calculations are done very simply. Traveling on the orthodrome is more difficult, 
because it is necessary to constantly change direction. An exception is traveling along the 
meridian or the equator, because they are also great circles, i.e., orthodromes. In those 
cases, orthodromes and loxodromes coincide. While ships were slow and world trade was 
not as intense as it is today, the advantage of the orthodrome as a shorter sea route was 
less pronounced [7]. However, with the increase in the carrying capacity of ships, the 
increase in fuel consumption and the need for faster cargo manipulation, any unnecessary 
detention of the ship became expensive, so the importance of the shortest sailing route 
also increased. 

Orthodromes in the North Atlantic connect the ports of the East Coast of the USA and 
Western Europe. Due to the relative shortness, the savings are around a hundred nautical 
miles, however, due to entering higher latitudes, rhombus sailings often have their own 
justification. Orthodromes in the Middle and South Atlantic connect the ports of Southern 
Europe and West Africa with the ports of North, Central and South America. Due to the low 
latitudes, the savings are not particularly large and amount to up to a hundred nautical 
miles. Orthodromic savings in the North and South Pacific are particularly significant. On 
these routes, ships can save up to 500 nautical miles when sailing on the orthodrome. The 
biggest savings are on orthodromic routes that lead from ports in South America to ports 
in Australia, Indonesia, and New Zealand [9]. 
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3 EXPERIMENTAL PART 

As part of the experimental part of the work, scripts were created in the Matlab software 
package that calculated the lengths of the geodetic line on the ellipsoid and the 
orthodrome between the central and peripheral points (Figure 10). Three central points 
were chosen at approximately 30°, 45°, and 60° north latitudes. Although it was possible 
to simply specify the values of the coordinates of the central points, the cities at the desired 
latitudes were selected, and their coordinates were taken from the Google Earth software. 

Since the radii of curvature of ellipsoids change with latitude, it is possible to obtain 
different results. Although longitude has no effect on the result, the values of this 
coordinate are very similar for all three central points. From each central point, the 
longitudes of up to 100 peripheral points were calculated, which were selected so that the 
first one (with an index of 1) is located on the same meridian as the central point, and the 
latitude is 5 degrees higher. Each subsequent peripheral point has a latitude less than 0,1°, 
and a longitude greater than 0,1°, until it is on the same parallel as the central one. Then, 
to the point with index 100, both width and length are reduced by 0,1°. 

 
Figure 20. Central point CT1 (Stockholm) 

The length of the geodetic line was calculated on the GRS80 ellipsoid using the Bessel 
method for solving the second main geodetic task. The radii of the spheres that 
approximate the GRS80 ellipsoid were calculated according to expressions (1) (radius R1), 
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(5) (radius R2) and (6) (radius R3), and the length of the orthodrome according to expression 
(7). The differences between the lengths of the geodetic line and the orthodrome were then 
calculated and the obtained values were analyzed. 

3.1 RESULTS 

Due to the large number of obtained numerical values, they are shown graphically, and 
later in the discussion, the values that are of interest for the analysis are highlighted. The 
calculated radii of the spheres used in calculating the lengths of the orthodrome are R1 = 
6 371 000,790 m, R2 = 6 371 000,181 m and R3 = 6 371 008,771 m. 

Stockholm was chosen as the first central point (CT1), at 59˚20'00''N and 18˚03'00''E. At 
this latitude, the radius of the bend along the meridian of the GRS80 ellipsoid is M = 6 351 
187,187 m, and along the first vertical N = 6 393 990,993 m. 

 
Figure 21. The lengths of geodetic lines and orthodromes for central point CT1 

Novi Sad was selected as the second central point (CT2), at 45˚15'06''N and 19˚50'13''E. 
At this latitude, the radius of curvature along the meridian of the GRS80 ellipsoid is M = 6 
346 162,595 m, while along the first vertical N = 6 388 932,537 m. 



Journal of Faculty of Civil Engineering   44_2023 

JFCE | 97  

Table 3. Values of geodetic line lengths and orthodromes to individual peripheral points for CT1 

CT1 
(Stockholm) 

Point 
Lengths of 
geodetic 
lines [m] 

Lengths of 
orthodromes 

– R1 [m] 

Lengths of 
orthodromes 

– R2 [m] 

Lengths of 
orthodromes 

– R3 [m] 

1 556 152,577 555 974,702 555 975,259 555 975,398 

10 461 489,228 458 400,041 458 400,501 458 400,615 

20 375 257,570 359 667,977 359 668,337 359 668,427 

30 325 806,302 282 646.635 282 646.919 282 646.99 

40 331029.613 249559.713 249559.963 249560.025 

50 389 279,374 277 650,050 277 650,329 277 650,398 

60 342 961,788 255 919,694 255 919,951 255 920,015 

70 327 205,078 277 951,853 277 952,131 277 952,201 

80 364 823,299 345 493,933 345 494,279 345 494,366 

90 442 956,859 438 627,226 438 627,665 438 627,775 

100 544 717,157 544 888,909 544 889,455 544 889,591 

 
Figure 22. The lengths of geodetic lines and orthodromes for central point CT2 
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Table 4. Values of geodetic line lengths and orthodromes to individual peripheral points for CT2 

CT2  
(Novi Sad) 

Point 
Lengths of 
geodetic 
lines [m] 

Lengths of 
orthodromes 

– R1 [m] 

Lengths of 
orthodromes 

– R2 [m] 

Lengths of 
orthodromes 

– R3 [m] 

1 554 873,071 555 974,702 555 975,259 555 975,398 

10 462 721,159 460 913,054 460 913,516 460 913,632 

20 386 593,210 373 781,406 373 781,781 373 781,875 

30 356 217,838 322 688,224 322 688,547 322 688,628 

40 383 059,727 326 083,765 326 084,092 326 084,174 

50 457 291,603 383 339,080 383 339,465 383 339,561 

60 396 447,927 338 564,512 338 564,851 338 564,936 

70 359 281,885 324 753,793 324 754,118 324 754,200 

80 377 645,642 363 817,212 363 817,577 363 817,668 

90 444 979,232 442 688,955 442 689,399 442 689,510 

100 543 426,978 544 916,152 544 916,699 544 916,835 

Ajdabiya, at 28˚34'14''N and 19˚08'06''E, was selected as the third central point (CT3). At 
this latitude, the radius of curvature along the meridian of the GRS80 ellipsoid is M = 6 340 
294,996 m, while along the first vertical N = 6 383 025,393 m. 

 
Figure 23. Lengths of geodetic lines and orthodromes for central point CT3 
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Table 5. Values of geodetic line lengths and orthodromes to individual peripheral points for CT3 

CT3  
(Ajdabiya) 

Point 
Lengths of 
geodetic 
lines [m] 

Lengths of 
orthodromes 

– R1 [m] 

Lengths of 
orthodromes 

– R2 [m] 

Lengths of 
orthodromes 

– R3 [m] 

1 553 307,917 555 974,702 555 975,259 555 975,398 

10 463 472,879 463 955,172 463 955,637 463 955,753 

20 396 163,891 390 126,733 390 127,125 390 127,222 

30 381 140,550 364 811,178 364 811,544 364 811,635 

40 424 109,337 398 073,380 398 073,779 398 073,879 

50 510 558,643 478 375,668 478 376,148 478 376,267 

60 438 993,984 414 324,833 414 325,248 414 325,352 

70 385 903,029 371 344,354 371 344,726 371 344,819 

80 388 775,713 383 616,644 383 617,028 383 617,124 

90 446 607,274 447 224,898 447 225,347 447 225,459 

100 541 988,437 544 946,575 544 947,122 544 947,258 

As expected, the geodetic line length values change with latitude (Figure 14). The diagram 
shows that the differences are minimized when the central and peripheral points are at 
approximately the same longitude (the meridian is a geodetic line), while the biggest 
differences are when the central and peripheral points are on the same parallel. 

 
Figure 24. Changes in geodetic line lengths for three central points 
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4 DISCUSSION 

Values of special interest were extracted from the obtained results. Table 4 shows the 
minimum lengths of geodetic lines, while table 5 shows the values of the minimum lengths 
of orthodromes. 

Table 6. Minimum values of geodetic line lengths 

Central point Index 
Minimal length of 
geodetic line [m] 

CT1 34 320 814,648 

CT2 30 356 217,838 

CT3 28 379 344,067 

Table 7. Minimum values of orthodrome length 

Table 8. The difference in the length of the geodetic line and the orthodrome for CT1 

CT1 
(Stockholm) 

Index 
Difference for 

orthodrome R1 [m] 
Difference for 

orthodrome R2 [m] 
Difference for 

orthodrome R3 [m] 

1 177,874 177,317 177,178 

10 3 089,187 3 088,727 3 088,613 

20 15 589,592 15 589,232 15 589,142 

30 43 159,666 43 159,382 43 159,312 

40 81 469,900 81 469,650 81 469,587 

50 111 629,323 111 629,045 111 628,975 

60 87 042,094 87 041,837 87 041,773 

70 49 253,225 49 252,946 49 252,877 

80 19 329,366 19 329,019 19 328,933 

90 4 329,633 4 329,193 4 329,083 

100 -171,751 -172,298 -172,434 

Table 9. The difference in the length of the geodetic line and the orthodrome for CT2 

CT2 
(Novi Sad) 

Index 
Difference for 

orthodrome R1 [m] 
Difference for 

orthodrome R2 [m] 
Difference for 

orthodrome R3 [m] 

1 -1 101,631 -1 102,188 -1 102,327 

10 1 808,104 1 807,642 1 807,527 

20 12 811,803 12 811,428 12 811,335 

30 33 529,614 33 529,291 33 529,209 

40 56 975,961 56 975,634 56 975,553 

50 73 952,523 73 952,138 73 952,042 

60 57 883,415 57 883,076 57 882,991 

70 34 528,092 34 527,766 34 527,685 

80 13 828,429 13 828,065 13 827,974 

90 2 290,277 2 289,833 2 289,722 

100 -1 489,174 -1 489,721 -1 489,857 

Central 
point 

Index 
Minimum length of 

orthodrome for R1 [m] 
Minimum length of 

orthodrome for R2 [m] 
Minimum length of 

orthodrome for R3 [m] 

CT1 40 249 559,713 249 559,963 249 560,025 

CT2 34 316 920,828 316 921,146 316 921,225 

CT3 29 364 698,810 364 699,176 364 699,267 
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In the tables, it can be seen that the minimum values of geodetic line lengths and 
orthodromes are not obtained for the same indices, and that the largest difference in 
indices is for the northernmost point, and the smallest for the southernmost central point. 

Based on the calculated length values, approximation errors were also determined as the 
difference between the length of the geodetic line and the orthodrome for each central-
peripheral point pair. The calculated values for every tenth index, as well as the maximum 
and mean error values are given in the following tables. 

Table 10. The difference in the length of the geodetic line and the orthodrome for CT3 

CT3 
(Ajdabiya) 

Index 
Difference for 

orthodrome R1 [m] 
Difference for 

orthodrome R2 [m] 
Difference for 

orthodrome R3 [m] 

1 -2 666,784 -2 667,341 -2 667,481 

10 -482,292 -482,757 -482,873 

20 6 037,157 6 036,766 6 036,668 

30 16 329,371 16 329,006 16 328,914 

40 26 035,956 26 035,557 26 035,458 

50 32 182,975 32 182,495 32 182,376 

60 24 669,151 24 668,735 24 668,632 

70 14 558,675 14 558,302 14 558,209 

80 5 159,069 5 158,684 5 158,588 

90 -617,624 -618,072 -618,184 

100 -2 958,138 -2 958,684 -2 958,820 

Table 11. The maximum values of the differences between the lengths of the geodetic line and the 
orthodrome 

Central point Index Orthodrome R1 [m] Orthodrome R2 [m] Orthodrome R3 [m] 

CT1 51 113 816,952 113 816,668 113 816,597 

CT2 51 75 235,484 75 235,091 75 234,993 

CT3 51 32 611,064 32 610,575 32 610,453 

Table 12. Arithmetic means of the difference of lengths 

 

 

 

 

In Tables 6, 7 and 8, it can be observed that the deviation increases with decreasing latitude 
of the peripheral point and that it has the maximum value when the central and peripheral 
points are on the same parallel. After that, the deviation decreases, for one peripheral point 
it has a value of zero and then a negative value. At CT2 and CT3, the deviation for one 
peripheral point is 0 m and for peripheral points north of the central one, with the fact that 
at point CT3 that peripheral point is closer to the central one, viewed in terms of latitude. 
Bearing this in mind, as well as the fact that the maximum error is the smallest in CT3 and 
the largest in CT1 (almost 3,5 times larger), it follows that the spheres determined in the 
three presented ways are a significantly better approximation of the ellipsoid in areas 
closer to the equator than at higher latitudes. Moreover, if errors are viewed relatively, i.e., 
in relation to the corresponding values of the geodetic line lengths, for the peripheral point 
with index 50, the error value on CT3 will be 6 3% and on CT1 28 6%. Moreover, all three 

Central point Orthodrome R1 [m] Orthodrome R2 [m] Orthodrome R3 [m] 

CT1 41 489,811 41 489,405 41 489,304 

CT2 28 501,741 28 501,296 28 501,185 

CT3 11 824,751 11 824,269 11 824,148 
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methods of calculating the radius of the sphere give similar deviation values, so this 
consideration is valid for all three spheres. The calculated deviation values for the sphere 
with radius R3 are also presented graphically in Figure 15. The diagram clearly shows that 
the smallest deviation is at the southernmost central point, as well as the smallest value 
variation. 

 
Figure 25. The values of the obtained differences for Stockholm, Novi Sad and Ajdabiya 

From tables 6, 7 and 8, as well as from tables 9 and 10, it can be seen that the values of 
the differences vary very little when looking at the radii. For each central point and index, 
the differences are of the order of several decimeters. On a small-scale map (for which the 
sphere approximation is often used), these values are fractions of a millimeter. Compared 
to the difference values, these variations are several orders of magnitude smaller. All this 
leads to the conclusion that, from the point of view of accuracy, all three examined 
methods of approximation give almost identical results. However, from the values in the 
tables, it can be seen that the smallest deviation is always for the sphere of radius R3. Also, 
this radius is the simplest to calculate (arithmetic mean of three values), so although with 
modern computers it is not such a significant detail, it still follows that it is the best choice 
for approximation. 
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5 CONCLUSION 

In this paper, three ways of approximating the ellipsoid with a sphere (equivalent volume, 
equivalent surface, and the arithmetic mean of the three semi-axes of the rotating ellipsoid) 
were examined. The difference between the length of the geodetic line and the length of 
the orthodrome on three spheres of different radii was taken as a measure of the accuracy 
of the approximation. Longitudes were calculated between the central and 100 peripheral 
points of different latitude and longitude. This calculation was repeated for three central 
points, at different latitudes. 

The results showed that all three methods of calculating the radius of the sphere give very 
similar deviations, although the deviation for the radius calculated as an arithmetic mean 
was consistently the smallest. Since the sphere approximation is most often used for fine-
scale maps, these variations in deviation are negligible. The calculated values also showed 
that these approximations give the best results for areas closer to the equator. Calculating 
with absolute errors, the sphere approximation at 30° latitude was 3,5 times better than at 
60°, and if considering relative errors, it was 4,5 times better. In the era of modern 
geoinformation systems, computers with high processing power, and software tools for 
cartography, these values raise doubts about the necessity of using a sphere as the 
geometric shape that most closely approximates the Earth’s shape. 
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