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Summary: This paper considers the application of a nonlinear model of a dynamic shock 

absorber in building structures. The considered dynamic shock absorber forms a strained 

elastic rope with a concentrated mass on it. This dynamic shock absorber is structurally 

very simple and can be easily installed on various types of structures such as e.g. 

platforms, metal structures and other structures. The main advantage of such a dynamic 

shock absorber is the possibility to achieve its essential dynamic characteristics with the 

prestressing of the elastic rope (cable). The paper analytically and numerically considers 

the behavior of a model of a given structure that is exposed to different types of dynamic 

loading. 
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1. INTRODUCTION 
 

Dynamic shock absorber or Tuned mass damper (TMD) is one of the ways to reduce 

unwanted oscillatory movements in engineering systems. A well-developed theory is an 

advantage of application. It should be emphasized that in terms of a well-known theory, 

we mean the theory of linear oscillatory systems. Linear theory implies, above all, small 

displacements, as well as a linear connection in the constitutive relation of the materials 

from which the structures are made. 

In structures that are important for a civil engineer, these conditions are met in a large 

number of practical cases. The dynamic shock absorber is a special oscillatory subsystem 

with its dynamic characteristics. As such, in order for the preliminary dynamic analysis of 

the structure on which the TMD dynamic damper is mounted to be in the linear domain, 

it is necessary for the TMD itself to be a linear oscillator. This imposes certain restrictions 

on the designer. 

Namely, the goal is that under a given dynamic load to which the basic structure is 

exposed, the movement of its elements will be as small as possible. This is possible if, on 

the other hand, the movement of the TMD is also small. As is known, the oscillatory 

motion of TMD can significantly reduce the amplitude of the oscillatory motion of the 

elements of the basic structure. In this regard, it is desirable that the movement of the TMD 
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be as much as necessary to achieve the desired effect on the basic structure. However, as 

previously mentioned, the amplitudes of motion of the TMD elements need to be within 

certain limits in order for the linear theory to be applicable. In linear theory, the mass and 

stiffness of TMD completely define its dynamic characteristics, i.e. the frequency of 

external coercion to be amortized. Here are some well-known examples of the application 

of TMD in building structures, such as Taipei 101 or John Hancock tower. 

The application of nonlinear TMD in the basic structure, which is still in the linear field, 

is increasingly attracting the attention of researchers and engineers. With such application, 

in addition to mass and stiffness, TMD amplitudes are also important. In this way, greater 

possibilities and coverage of a larger frequency spectrum are provided. 

On the other hand, the area of nonlinear oscillations is still often a great unknown because, 

unlike the linear one, it is far less developed. Also, what is valid in linear theory will not 

be valid in nonlinear oscillatory systems. For example, a typical problem is the method of 

superposition, which is not valid in nonlinear theory. 

This paper will present a part of the research that represents a further continuation of the 

work [1]. The aim is to show the possibility of applying a single TMD, which is a simple 

construction, to reduce unwanted vibrations in an engineering structure. Using the 

analytical analysis introduced in [1], a part of extensive numerical experiments is 

presented here. It will be shown that the nonlinearity that naturally exists in the introduced 

TMD can have a beneficial effect on the functioning of the TMD. 

 

 

2. MECHANICAL MODEL 
 

The structure, Figure 1, is considered to be a platform set on four vertical colums. It will 

be assumed that the total mass of the structure M is concentrated in the horizontal platform 

itself, while the masses of the columns will be neglected. It is also assumed that the 

platform is rigid and that the columns are slender and elastic with pre-known 

characteristics. The vertical elements are clamped to the base. As for the connection of the 

columns with the platform, two types of connection will be considered: 1. clamping, 2. 

cylindrical joint. 

 
Figure 1.  

 

A TMD is placed on the platform, which consists of a tightened wire (cable) whose ends 

are attached to the platform itself. The wire is passed through a body of mass m, which 
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can move along a horizontal guide that is placed on the platform itself. It will be assumed 

that the dimensions of the body are much smaller than the total length of the cable. 

In order to consider the oscillatory motion of the structure from Figure 1, an appropriate 

mechanical model is introduced, which is shown in Figure 2. 

 

 
Figure 2.  

 

The presented mechanical model (Figure 2) consists of a discrete system of two 

concentrated masses so that it is a system of two degrees of freedom of movement (2DOF). 

The generalized coordinates that define the motion of the masses 𝑀 and 𝑚 are denoted by 

𝑥1 and 𝑥2  respectively, and they are measured from the stable equilibrium positions of 

the observed masses. The constant 𝑘1 reflects the rigidity of the elastic vertical elements 

on which the platform stands. The constants 𝑘2 and 𝑘3 describe the stiffness of a taut cable, 

where 𝑘2 represents the stiffness of the linear part, while 𝑘3 will appear in the nonlinear 

part of the assumed model of the restitution force of a taut cable in the form of 

  

𝐹𝑟2 = 𝑘2∆𝑙2 + 𝑘3∆𝑙2
𝛼  (1) 

 

where ∆𝑙2 is the deformation of the second spring in Figure 2, while for degree 𝛼 holds 

𝛼 ∈ ℝ+. 

The TMD restitution force model represented by expression (1) was adopted on the basis 

of experimental research presented in [2]. By adopting suitable values of degree 𝛼, it is 

possible to approximate with the desired accuracy the relationship between force and 

displacement of a real system. It should be emphasized that model (1) is an extension of 

the so-called purely nonlinear restitution forces (pure nonlinear), which has occupied the 

attention of researchers in the previous two decades [3]. For the restitution force of the 

basic system (platform with elastic columns) the linear form is adopted in accordance with 

Hooke's law: 

 

𝐹𝑟1 = 𝑘1∆𝑙1 (2) 

 

where the coefficient 𝑘1 is represented by the expression (3): 

 

𝑎) 𝑘1 =
48𝐸𝐼

𝑙3 , 𝑏) 𝑘1 =  
12𝐸𝐼

𝑙3  . (3) 
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Expression (3a) represents the flexural stiffness of four elastic vertical elements clamped 

at both ends using an analogy with series-connected springs. In case the vertical elements 

are clamped at one end and with cylindrical joint at the other end, the corresponding 

stiffness is given by expression (3b). The reason for taking into account these two methods 

of bonding is in considering their influence on the dynamic behavior of the structure under 

a given time-varying load. It is of interest to establish the interrelationship between the 

stiffness of the basic structure and the stiffness of the TMD and the influence of this 

connection on the reduction of unwanted vibrations of the basic system. 

 

 

3. MATHEMATICAL MODEL 
 

The mathematical model of the oscillatory system in Figure 2 consists of a system of two 

coupled differential equations that can be represented in a concise form with the following 

matrix equation:  

 
[𝑀]{�̈�} + [𝐶]{�̇�} + [𝐾]{𝑥} + [𝐾∗]{𝜉}𝛼 = {𝐹(𝑡)} (4) 

 

The following notations are introduced in expression (4): [𝑀] = [
𝑀 0
0 𝑚

] - mass matrix; 

[𝐶] = [
𝑐1 + 𝑐2 −𝑐2

−𝑐2 𝑐2
]  - damping matrix; [𝐾] = [

𝑘1 + 𝑘2 −𝑘2

−𝑘2 𝑘2
] - stiffness matrix of the 

linear part of the restitution force; [𝐾∗] = [
𝑘3 0
0 𝑘3

] - stiffness matrix of the nonlinear part 

of the restitution force; {�̈�} = {
�̈�1

�̈�1
} - acceleration vector; {�̇�} = {

�̇�1

�̇�2
} - velocity vector, 

{𝑥} = {
𝑥1

𝑥2
} - displacement vector; {𝐹(𝑡)} = {

𝐹1(𝑡)
0

} - vector of external time-varying 

actions. Value 𝜉 is denoted by 𝑥1 − 𝑥2. The damping in the observed system is modeled 

with viscous friction forces. The time-varying load is adopted to act on the mass M. 

The external time-varying load can be, as suggested in [1], modeled as follows:  

 

𝐹1(𝑡) = 𝐹10𝑐𝑛𝛼(Ω𝑡, �̅�) (5) 

 

where 𝑐𝑛 denotes the Jacobi elliptic function whose moduo is �̅�. Namely, Jacobi elliptic 

functions are two-parameter functions, which as such enable modeling of different types 

of loads by choosing suitable values for Ω and parameter �̅�. It should also be emphasized 

that, for example, the harmonic functions 𝑠𝑖𝑛 and 𝑐𝑜𝑠 are only special cases of Jacobi 

elliptic functions, and as such are contained in the mathematical model defined by the 

expression (5) 

As it is known, in case that [𝐾∗] = 0, it is a linear system. The basic system (platform with 

vertical elements) is linear, and its own (natural) circular frequency of undamped 

oscillations is easily determined as 𝜔𝑛 = √𝑘1/𝑀. By adding TMD, the system has 2SSK 

(2DOF), two own circular frequencies, as well as two basic oscillation modes. In the case 

of linear TMD, a well-known theory allows the determination of the stated quantities. 
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However, in the case of nonlinear TMD, the analysis is much more complex. Analytical 

consideration of this problem goes beyond the scope of this paper, so that only the part 

that arose as a result of extensive numerical analysis will be presented here. 

 

 

4. NUMERICAL ANALYSIS 
 

A system with the following parameters is observed: 𝑀 = 1000𝑘𝑔, 𝑚 = 90𝑘𝑔, 𝑘1 =
2000 𝑘𝑁/𝑚,  𝑘2 = 50 𝑘𝑁/𝑚,  𝑘3 = 100 𝑘𝑁/𝑚, 𝛼 = 2, 𝑐1 = 4 𝑘𝑁𝑠/𝑚 and 𝑐1 = 2 𝑘𝑁𝑠/
𝑚. In order to consider only forced oscillations, zero initial conditions are adopted. The 

parameters introduced in this way correspond to a typical construction whose model is 

shown in Figure 1 for the standard characteristics of vertical elements as well as the two 

mentioned methods of bonding. In addition, the TMD parameters are consistent with the 

experimental studies presented in [2]. 

A harmonic excitation whose amplitude is 𝐹0 = 10𝑘𝑁 will be considered. Figure 3 shows 

the case of resonance of a basic system without TMD, when the excitation frequency Ω is 

equal to its own circular frequency. 

 

 

 
Figure 3. Basic system resonance without TMD 

 

 

Figure 4 shows the movement of the basic system (defined by the coordinate 𝑥1) when the 

TMD is placed on it. In this case, only the linear part of the restitution force TMD was 

taken, i.e., it was assumed to be 𝑘3 = 0. Numerical integration was performed for the case 

of a lower natural circular frequency now of a system with 2SSK. It can be noticed (above 

enlarged image) that the amplitudes of the basic system are now 60% lower. 
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Figure 4. Time history 𝑥1(𝑡) for the case of linear TMD 

 

Figure 5 shows the movement of the basic structure when the nonlinearity of TMD is taken 

into account and where the nonlinear degree of restitution force is assumed to be 2. It can 

be noticed that in this case the maximum amplitudes are 10 times smaller. 

 

 
Figure 5. Time history 𝑥1(𝑡) for the case of nonlinear TMD 
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5. CONCLUSION 
 

The paper presents a case of applying a TMD to reduce unwanted vibrations of a model 

of a real engineering structure. The introduced TMD is simple construction, but whose 

dynamic behavior is characterized by pronounced nonlinearity. Numerical experiments 

indicate that taking into account these nonlinearities can significantly improve the 

performance of TMD. A significant advantage of this TMD is that with the desired 

prestressing of the cable, the characteristics of the TMD itself are affected. 
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О ЈЕДНОМ НЕЛИНЕАРНОМ МОДЕЛУ 

ДИНАМИЧКОГ АМОРТИЗЕРА У 

КОНСТРУКЦИЈАМА 
 
Резиме: У овом раду се разматра примена нелинеарног модела динамичког 

амортизера у грађевинским конструкцијама. Разматрани динамички амортизер 

чини затегнуто еластично  уже са концентрисаном масом на њему. Овакав 

динамички амортизер је конструктивно врло једноставан и може бити лако 

постављен на разне типове конструкција као што су нп. платформе,металне 

конструкције и друге структуре. Основна предност оваквог динамичког 

амортизера је могућност да се његове битне динамичке карактеристике постигну 

са преднапрезањем еластичне жице (сајле). 

У раду се аналитички и нумерички разматра понашање модела дате структуре 

која је изложена различитим типовима динамичког оптерећање. 

 

 

Кључне речи: динамички амортизер, конструкције 

  


