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Summary: Finite element method (FEM) has been successfully used for solving a wide 

range of engineering problems. However, in some cases the application of FEM is 

impractical or even impossible. Therefore new methods have been invented that do not 

need a mesh of elements, but rather rely on approximating the field variable by a set of 

nodal values - Meshfree (M-Free) or Meshless methods. This paper presents a short 

overview of the concepts and types of M-free methods, bringing engineers' attention  to 

the new possibilities that they provide. 
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1. INTRODUCTION 
 

Many natural phenomena can be described in terms of algebraic, differential or integral 

equations. However, exact, analytical solutions to these equations are hard, and often even 

impossible to obtain, except for the relatively small number of simple and idealized 

problems. Thus engineers and scientists need to rely on various numerical procedures for 

finding approximate solutions to the problem of interest. One of the most widely used and 

most developed numerical procedures for solving differential equations is the Finite 

Element Method (FEM). FEM is robust, very widely applicable and efficient technique, 

and it has been used in solving engineering problems with great success over the last 

couple of decades. Nevertheless, this method has some shortcomings that are becoming 

more and more apparent [1].  

For instance, FEM relies on representing the domain of interest by the mesh of elements, 

but in order to get valid results, elements should have as regular shape as possible, and 

there are no algorithms that could automatically generate a quality mesh for problems with 

complex geometries, so the analyst has to spend a lot of time in creating an adequate mesh. 
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Moreover, if an adaptive analysis is required, the mesh has to be refined at each step and 

there has to be a certain mapping between the meshes, which requires additional 

computation and greatly increases the (numerical) cost of re-meshing. There are also 

limitations in analysis of some problems, especially ones that include discontinuities - the 

crack growth analysis, for instance. It is very difficult to simulate the breaking of the 

material with the conventional FEM because of its formulation, since it is based on 

Continuum Mechanics. Another consequence of the FEM formulation procedure is the 

low accuracy in secondary and derivative variables, such as stresses in Solid Mechanics 

analysis. For stresses to be continuous and more accurately predicted, either more complex 

elements and finer meshes should be constructed, or some special techniques (such as the 

use of super-convergence points or patches) have to be used. 

 

This is why new numerical procedures are being developed. Some of them aim at 

improving the conventional FEM (Extended FEM - XFEM, General FEM - GFEM, FEM 

with embedded discontinuities, to name a few), and some have taken new, different 

approach and have been established as independent procedures. One class of these 

methods does not require mesh of elements to represent the problem domain, but rather 

uses only a set of scattered nodes, and thus these are called Mesh-free (MFree) or Meshless 

methods. There are many different types of MFree methods and the purpose of this paper 

is to give the reader a short insight into the underlying basic concepts and overview of 

MFree methods developed so far, in order to bring his or her attention to the new 

possibilities these methods provide for solving various engineering problems. 

 

 

2. WHAT ARE MESH-FREE METHODS? 
 

As briefly mentioned above, Mesh-free methods use scattered nodes to represent the 

problem domain and do not require mesh of predefined elements. Examples of 2D and 3D 

problem domain representetaion using FEM and MFree method can be seen in Figure 1. 

Since there are lots of similarities between FEM and MFree methods, perhaps the best 

way to explain the basic ideas of the latter is to contrast them to the well-known concepts 

of FEM, pointing out and describing the differences. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. FEM and MFree problem domain representation; 2D problem (left) and 3D 

problem (right) [1] 
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The idea behind the FEM 
 

The basic idea in FEM is to devide the problem domain into a number of subdomains and 

aproximate the sought field variable function over each of the subdomains with the 

predetermined interpolation function. These subdomains are called finite elements and the 

most commonly used interpolation function is of the form: 

 

𝑢(𝑥) ≈ 𝑢ℎ(𝑥) =∑𝐵𝑖(𝑥)𝛼𝑖

𝑛

𝑖=1

= ∑𝑝𝑖(𝑥)𝛼𝑖

𝑛

𝑖=1

= 𝐩T𝛂                             (1) 

 

where 𝑢(𝑥) is the field variable function that is sought, i.e. the exact solution to the given 

differential equation, 𝑢ℎ(𝑥) is the aproximate solution to the problem,  𝐵𝑖(𝑥) are the basis 

functions, 𝛼𝑖 are constant coefficients that need to be determained, n is the number of 

terms in series, and also the number of nodes of the finite element at hand. For many 

elements, polinomials 𝑝𝑖(𝑥) = 𝑥𝑖−1 are used as the basis functions for interpolation. The 

last term to the right is matrix form of the above equation, where p is the vector of 

polinomial basis functions, and α is the vector of yet unknown coefficients. These 

coefficients are determained by writing this equation for every node of the element, which 

yields a system of n algebraic equations with n unknown constants that, if we adopt the 

symbol 𝑢𝑖 ≡ 𝑢(𝑥𝑖), can be expressed as follows 

 

[

𝑢1
⋮
𝑢𝑛
] = [

𝑝1(𝑥1) … 𝑝𝑛(𝑥1)
⋮ ⋱ ⋮

𝑝1(𝑥𝑛) … 𝑝𝑛(𝑥𝑛)
] [

𝛼𝑖
⋮
𝛼𝑛
]   ⇔   𝐔 = 𝐏𝑚𝛂                           (2) 

 

Solving the sistem for α and returning these values in Equation 1 we get 

 

𝑢(𝑥) ≈ 𝑢ℎ(𝑥) = 𝐩T𝐏𝑚
−1𝐔 = 𝐍 𝐔 =∑𝑁𝑖(𝑥)𝑢𝑖

𝑛

𝑖=1

                              (3) 

 

Here, 𝑁𝑖(𝑥) is the shape function for the node i and 𝑢𝑖 is the value of the field variable in 

that node. Since the number of element nodes equals the number of terms in the series 

used for aproximation, shape functions have the so called δ-function property, i.e. they are 

unity at their node, and zero in every other node. Consequently, the nodal values of the 

aproximate solution are in fact the exact values of the field variable, and the aproximate 

and the exact solutions differ only between the nodes. Such type of aproximation is called 

interpolation5.  

 

So, for a given problem and the chosen element type, the shape functions 𝑁𝑖(𝑥) are chosen 

in advance, thus conditioning the order of interpolation function, and thereafter the finite 

elements of the chosen type are arranged into a "mosaic" such as to cover all of the problem 

                                                           
5 In difference to other types of aproximation where the aproximation function is of lower order and 

does not pass through every nodal value exactly. The latter type will be termed just aproximation in 

this paper. 
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domain, and the union of all the interpolation functions of indiidual elements enlarged 𝑢𝑖 
times at node i gives the aproximate "picture" of the field variable function. It should be 

mentioned that, if natural or baricentric coordinates and isoparametric formulation for 

finite elements are used, shape functions are the same for each element of the same type.  

 

To ilustrate the aforedescribed procedure, the Figure 2a shows how FEM is used to 

aproximate the solution 𝑢(𝑥) over the domain Ω . The coarse mesh is deliberatly chosen 

for the purposes of illustration. The more accurate aproximation could be achieved either 

by using more elements (h refinement) or by using elements with higher order of 

interpolation (p refinement), which would require inserting the so-called interior nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Illustration of FEM interpolation (a), and MFree aproximation (b) functions 

 

Defining the interpolation function 𝑢ℎ(𝑥) over the whole domain requires that first the 

nodal values 𝑢𝑖 be determained. This is done using the constitutive realations to formulate 

a sistem of equations first for each finite element, and then assambling all these equations 

into a global system of equations for the whole problem. The most convenient way to do 

this is the Galerkin weighted residual method, which gives the system of equations of the 

form 

 

𝐊𝐔 = 𝐅                                                                     (4) 
 

where K is the global stiffness matrix, U is the vector of all nodal displacements and F is 

the vector of nodal  loads. In this case, K is symmetric and positive definite, and elements 

of K can be determined as 

 

𝐾𝐼𝐽
𝑒 = ∫ 𝐁T𝐃𝐁 𝑑𝛺

𝛺𝑒

                                                        (5) 

 

where D is the flexibility matrix, and B is the matrix of derivatives of the interpolation 

functions N. For different types of problems, D will have different elements, and order of 

D and B would change, but the form of the Equation 5 remains the same. It can be 

concluded that for the most of elements, stiffness matrix has to be determined using 
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numerical integration (Gauss quadrature for example), which requires background 

integration cells and a set of integration points. 

 

The idea behind the MFree methods 
 

In these methods the problem domain Ω is represented only by the set of scattered nodes, 

and the field variable is aproximated at each point of interest, using the values in nodes in 

proximity of that point. The neighbourhood in which nodal values are used for obtaining 

the aproximation function is called the Local Support Domain (LSD), and the size of LSD 

is determined by parameters predefined by the analyst. Chosing the appropriate size of 

LSD is crucial for obtaining accurate and stable results, and it's role somewhat resembles 

the role of the element size in FEM [2]. LSD can be of any shape, but it is most often set 

to be circular or rectangular (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Various shapes of Local Support Domains [1] 

 

If we use the same methodology of field variable aproximation as in FEM, we get a similar 

equation which has exactly the same form as Equation 1, except now n denotes the number 

of nodes in LSD for the point of interest x. This is significant for two reasons. Firstly, this 

means that aproximation functions are determined at every point of interest independantly. 

Secondly, it also means that the order of the aproximation function depends directly on 

the number of nodes covered by the LSD. Since there can be a large number of nodes in 

LSD, this would result in unnecesserily high order of aproximation function, and that is 

why the following aproximation is used 

 

𝑢(𝑥) ≈ 𝑢ℎ(𝑥) =∑𝐵𝑖(𝑥)𝛼𝑖

𝑚

𝑖=1

= ∑𝑝𝑖(𝑥)𝛼𝑖

𝑚

𝑖=1

= 𝐩T𝛂                             (6) 

 

where m is the pre-chosen, desired order of aproximation function, and 𝑚 < 𝑛 always. 

This, however, leads to a problem in defining the shape functions. Namely, if we follow 

similar procedure as in FEM and write this equation for each of the n nodes in LSD we 

get the system of equations 

 

[

𝑢1
⋮
𝑢𝑛
] = [

𝑝1(𝑥1) … 𝑝𝑚(𝑥1)
⋮ ⋱ ⋮

𝑝1(𝑥𝑛) … 𝑝𝑚(𝑥𝑛)
] [

𝛼𝑖
⋮
𝛼𝑚

]   ⇔   [𝐔]𝑛x1 = [𝐏𝑚]𝑛x𝑚[𝛂]𝑚x1            (7) 
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and now the moment matrix 𝐏𝑚 cannot be inverted to express α in terms of nodal values 

U. In other words, this is not interpolation, but only aproximation of field variable and 

nodal values cannot be matched exactly. Instead, some procedure is utilised to find "the 

best aproximation fuction", i.e. the function that diverges minimally from the exact 

solution. To this end, the Weighted Least Square (WLS) method is often used, and it is 

based on defining the norm  

𝐽 =∑𝑊𝑖(𝑢
ℎ(𝑥𝑖) − 𝑢𝑖)

2

𝑛

𝑖=1

                                                 (8) 

 

and then minimizing it by finding the derivatives 𝜕𝐽 𝜕𝛼𝑖⁄  . This yields the system of m 

equations that can be solved for m unknown coefficieants 𝛼𝑖 : 
 

𝐏𝑚
T𝐖 𝐏𝑚 𝛂 = 𝐏𝑚𝐖 𝐔        ⇔        𝐀 𝛂 = 𝐁 𝐔                                (9) 

 

Here W is a diagonal matrix of nodal weights 𝑊𝑖 for nodes in LSD, calculated for every 

point of interest independently, using some bell-shaped weight function. The purpose of 

these weights is to include the influence of proximity of a given node to the point of 

interest - the closer the node, the higher its weight. There are many types of weight 

functions that can be used, but they are usually such as to equal unity at the point of interest 

(that is, at the center of LSD), and then gradually decline towards the border of LSD, 

finally reaching zero outside the LSD. This enables the later derived global stiffness matrix 

to be spars and thus the system of equations effectivly solved. Now the shape functions 

can be expressed as 

 

𝑢(𝑥) ≈ 𝑢ℎ(𝑥) = 𝐩T𝐀−1𝐁 𝐔 = 𝚽 𝐔 =∑𝛷𝑖(𝑥)𝑢𝑖

𝑛

𝑖=1

                         (10) 

 

Since this is not interpolation, these shape functions do not posess the δ-function property 

and this makes it harder to impose essential boundary conditions so some special 

techniques have to be used. In Figure 3 the aproximation and shape functions of MFree 

method or some 1D problem are shown. Again, as in FEM, there are only a few nodes for 

for the purpose of illustration. 

 

If the Solid Mechanics problem is investigated in its weak form, the equations obtaind 

through Galerkins WRM for example are of exactly the same form as in FEM, namly: 

  

𝐊𝐔 = 𝐅        with     𝐾𝐼𝐽 = ∫ 𝐁T𝐃𝐁 𝑑𝛺

𝛺

                                   (11) 

 

but now the integration does not happen iside the subdomain of each element Ωe, but rather 

at integration points throughout the entire problem domain Ω. Nevertheless, the 

background cells and a set of integration points are still required for numerical integration 

(thus this method is not "truly meshless", but there are truly meshless ones and they will 

be discussed shortly). However, the big difference compared to FEM is that the 
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aproximation functions need to be determined separately for each point of interest, i.e. 

interation point in this instance, in contrast to FEM where the interpolation functions are 

the same and predefined for each element. Therefore, an algorithm for numerical 

implementation of the illustrated MFree method for solving a Solid Mechanics problem 

can be summerized as shown in [1]. 

 

 

3. CLASSIFICATION AND TYPES OF MESH-FREE METHODS 
 

The MFree method described in the previous section is just one of many MFree methods 

developed so far. There are several basis for classification of these methods. 

 

For instance, in the above example, the Galerkin weak-form formulation was used, and 

the global stiffness matrix elements was calculated by integration over the whole problem 

domain. This is the so-called Global Weak-Form method. If the domain is devided to a 

number of subdomains and then the Galerkin transformtion is used, then it's the Local 

Weak-Fom method. One could also solve the problem in its strong-form, and thus avoid 

numerically expensive integration. MFree strong-form method is the collocation method 

and it is very effective but requires some speciall treatments to impose boundary 

conditions.  

In the given example the field variable function was aproximated by a series. This is the 

series-type representation of the function. There are also the integral representation 

methods (Smooth Partical Hydrodynamycs, Reproducing Kernel Partical method) and 

differential representation methods (Collocation method). 

 

Also, the aproximation functions in the example above needed to be determined at each 

integration point. Methods of this type are called Point-Interpolation methods. There is 

also a Moving Least Squares aproximation (the most fameous of these methods is the 

Element Free Galerkin (EFG) method), as well as the methods with some "extermnal" 

enrichments such as the hp-cloud method and Partition of Unity methods. 

 

In addition, the basis functions in the example are chosen to be polinomials of the form 

𝑝𝑖(𝑥) = 𝑥𝑖−1. These are called Polinomial Basis Functions (PBF). Alternatively, one 

could use the so-called Radial Basis Functions (RBF) for aproximation [1, 2]. So, the 

method used in this example could be categorized as the Polinomial Point Interpolation 

method for Global Galerkin weak-form problem formulation. If the RBF were used instead 

of PBF, that method would be the Radial Point Interpolation method - RPIM. 

 

 

4. PERFORMANCE COMPARISON OF FEM AND MFree METHODS 
 

In general, MFree methods have better accuracy and rate of convergence then FEM, and 

ususally require less computation time (depending on the method used), even for some 

classical problems, let alone the complex ones. Figure 4 shows the accuracy and rate of 

convergence diagrams for FEM with bi-linear elements and two MFree methods - RPIM 

and EFG, for one of the standard benchmark problems - a cantilever beam. 
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Figure 4. Accuracy (left) and rate of convergence (right) diagrams for FEM, EFG and 

RPIM, compared to the analitical solution for shearing cross-sectional stresses of a 

cantilever beam. R is the rate of convergence [1] 

 

It's evident that MFree methods exhibit better accuracy and rate of convergence than FEM. 

Moreover, they are somewhat faster than the conventional FEM, which can be seen from 

the Figure 5, where the CPU time needed for solution is plotted. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. The CPU time for convetional FEM, RPIM and EFG with two different ways 

of imposing the boundary conditions (penalty mode and Lagrange multipliers) [1] 

 
 

5. POSSIBILITIES AND FUTURE DEVELOPEMENT 

 
Compared to conventional FEM, MFree methods give better results in terms of accuracy 

and convergence when applied to certain classes of problems. However, depending on the 

formulation used, system matrices produced by these methods can lack symmetry and be 

highly populated (not sparse) which makes the solving harder and more costly. Therefore, 

one of the tasks in the future should be improving the existing formulations and defining 

the new ones such as to be more numerically effective.  

In every MFree method, one of the most important parts is the choice of basis functions 

and weight functions, since they directly influence the aproximation capabilities and 
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numerical stability of the solution. Figure 6 shows how different basis functions affect the 

final aproximation function. So far only the RBF and PBF have been used, and there is a 

lot of space for developing new basis functions that would perform better. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The effect of different weight functions (on the left) on the aproximate solution 

function (on the right) using the MLS formulation in EFG method  [3] 

 

Since both FEM and MFree methods have their advantages, as well as shortcomings, some 

authors combine them to get hybrid models getting the most out of both methods. As an 

example of this, in Figure 7 is shown how FEM and EFG can be combined in crack 

propagition analysis [4,5]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Combination of FEM and EFG for crack propagition analysis [5,6] 
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6. CONCLUDING REMARKS 

 

In the light of everything said, it can be concluded that Mesh-free methods present 

a promising and valuable tool for solving wide range of engineering problems. 

However, they should not be regarded as the supstitute for FEM, but rather its 

usefull compliment, and engineers versed in both methods could combine them to 

form even more efficient numerical procedures, or use the more suitable one for 

the problem at hand to obtain more reliable and accurate results. FEM is very 

thoraughly developed, and MFree methods are still in their developement stage, 

but they already show that they are a challenging and rich field to explore, 

certainly worth the attantion. 
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СЛЕДЕЋИ СТУПАЊ У НУМЕРИЧКОМ 

МОДЕЛИРАЊУ-ПРЕГЛЕД БЕЗМРЕЖНИХ МЕТОДА 

 
Резиме: Метод коначних елемената (МКЕ) се успешно користи при решавању 

широког спектра инжењерских проблема. Међутим, у неким случајевима је 

непрактично или чак немогуће применити МКЕ. Стога су развијене нове методе 

које не користе мрежу елемената већ поље разматране променљиве апроксимирају 

само преко њене вредности у чвровима - безмрежне методе, тј. методе без мреже. 

Овај рад представља кратак преглед концепата и типова безмрежних метода, у 

циљу скретања пажње инжењера на нове могућности које ове методе пружају. 

 

Кључне речи: Безмрежне методе, МКЕ, моделирање прслина 


