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Summary: Steel constructions include axially compressed elements that require analysis 

of stability. Existing analytical solutions to the stability problem are mostly based on crude 

assumptions and do not adequately account for the geometrical imperfections and semi-

rigid connections of elements. In this paper, a railway bridge truss strut subject to 

compression is analysed by the finite difference method and the second order theory, and 

values for stresses, displacements and element effective buckling length are obtained. 
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1. INTRODUCTION 
 

Buckling phenomenon and numerical values for ideal members have been firstly 

established by Swiss mathematician Euler in 1744. Considering assumption for elastic 

behaviour of material and ideal boundary conditions (rigid or hinge constrains) known 

relations for critical load can be derived for ideal member. Also, constrains that applies 

for bifurcation stability problem are adopted [1]. 

As the most of the real materials, steel is elastic-plastic material, and it has elastic 

properties until it reaches yield strength. When stresses exceed yield strength plastic 

behaviour occurs. In plastic domain assumptions about linear elastic stress-strain relation 

does not apply. The first equations that describe behaviour in this domain were established 

by Tetmeyer, and significant contribution to the theory of buckling was provided by 

Bauschinger, Engesser, Karman and Shanley [1], [2]. 
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In this paper buckling case of a steel truss bridge strut was analysed according to the 

example given in literature [3]. The bridge spans L=50.0 m, it is horizontal and straight. 

The main girders are trapezoidal trusses with webs that forms triangular panels (Fig. 1). 

The trusses are simply supported beams. Height of the trusses is 7500 mm, and the bridge 

width is 5000 mm. Parent material for the structure is structural steel S235 [3]. 
 

 
Figure 1. General view of the bridge [3] 

 

The strut D3 is analysed because degrees of fixity are approximately the same at both ends. 

Linear static analysis showed that design value of force in strut is  

ND,3=-1048.9 kN. Design is performed according to SRPS U.E7.081/1986, and for 

adopted cross section of the strut utilization rate regarding allowed stress is 72.8 % [3]. 

 

 

2. MATHEMATICAL MODEL OF THE STRUT 
 

Imperfect member with length of 2l and rigidity EI is considered. The member deviates 

from ideal straight line for 𝑦𝑚𝑎𝑥
𝑖𝑚𝑝

 in the middle (geometrical imperfection) and it has semi-

rigid connections with supports (Fig. 2). In deformation estimation only bending moment 

is taken into account, and normal and transverse forces were not considered. 
 

 
Figure 2. Model of strut (without deformation) 

 

Problem can be simplified by using symmetry simplification. Coordinate system can be 

placed in the middle of the member, so that deflection of the middle of the member, is 

actually deflection of the end of the member that occurs because of external loading. In 

this way the model beam (analysed member) has the following boundary conditions: at 
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one end the member is fixed, and on the other end displacements are free, but the bending 

moment occurs (Fig. 3). 
 

 
Figure 3. Simplified model (without deformation) 

 

For numerical analysis it is necessary to divide the member at 𝑛 equal segments. The 

number of the segments depends on the desired calculation accuracy and available time 

for calculation. It is estimated that preferred number of segments should be  

𝑛 = 300 ÷ 1000, and for this paper the adopted number of segments is 𝑛 = 500. 

 

 

3. GEOMETRICAL IMPERFECTIONS AND RESIDUAL STRESSES 
 

Because of the steel processing (rolling, welding) random structural and geometric 

imperfections occurs. Significant problem can be residual stresses caused by mentioned 

processing. For simplified calculations, standards impose allowed deviations. Allowed 

geometrical deviation from the straight line can be determined as: 
 

𝛿0,𝑚𝑎𝑥
𝑔𝑒𝑜𝑚

=
𝑙

1 000
 (1) 

 

where 𝑙 represents the member length. 

 

Residual stresses caused by rolling and welding requires much more complex analysis 

than needed for practical application. In 1978. Maquoi and Rondal provided method for 

estimating total imperfection of the member [4]. Regarding the cross section types, the 

members can be divided into five groups, and each of these groups has defined equivalent 

imperfection degree (𝛼). Total starting imperfection (𝛿0) can be calculated using these 

relations: 
 

𝛿0 = 𝑦𝑚𝑎𝑥
𝑖𝑚𝑝

= 𝛼 (𝜆 − 0.2)
𝑊

𝐴
 (2) 

 

𝜆 = √
𝐴 𝑓𝑦

𝑁𝑐𝑟

 (3) 

 

𝑁𝑐𝑟 =
𝜋2 𝐸 𝐼

𝑙0
2  (4) 
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where: 𝑊  – section modulus; 

 𝐴  – cross section area; 

 𝑓𝑦  – steel yield strength; 

 𝑁𝑐𝑟   – Euler critical load. 

 

By introducing corresponding geometric values of the member in equations above, the 

total imperfection can be calculated (𝑦𝑚𝑎𝑥
𝑖𝑚𝑝

). Assuming that the centroid axis of the 

member follows the second order parabolic line, and that function argument is a whole 

number as multiplier of the segment, those equations can be derived: 
 

𝑥 = 𝑖 𝛥𝑥 = 𝑖 
𝑙

𝑛
 (5) 

 

𝑦𝑖𝑚𝑝(𝑥) = 𝑝 𝑥2 (6) 
 

Using boundary conditions 𝑦𝑖𝑚𝑝(0) = 0 and 𝑦𝑖𝑚𝑝(𝑙) = 𝑦𝑚𝑎𝑥
𝑖𝑚𝑝

, the unknown parameter 𝑝 

and deviation value for node 𝑖 can be derived: 
 

𝑦𝑖𝑚𝑝(𝑥) = 𝑦𝑚𝑎𝑥
𝑖𝑚𝑝 𝑥

2

𝑙2
= 𝑦𝑚𝑎𝑥

𝑖𝑚𝑝 (𝑖 𝛥𝑥)2

(𝑛 𝛥𝑥)2
= 𝑦𝑚𝑎𝑥

𝑖𝑚𝑝 𝑖
2

𝑛2
. (7) 

 
 

4. BASIC EQUATION DERIVATION 
 

A cantilever with a spring on its free end, loaded with concentrated load, is considered. 

The equation for bending moment at node 𝑖 can be derived. Rotational spring influence 

can be taken in consideration by imposing a bending moment 𝑀 = 𝐶𝑐  𝜑, where coefficient 

𝐶𝑐 is equal to the bending moment that would rotate the spring for one rotation unit angle 

(Fig. 4). 

 

 
Figure 4. Discretized model with loads 

 

𝑀𝑖 = 𝑁 (𝑦𝑛
𝑡𝑜𝑡 − 𝑦𝑖

𝑡𝑜𝑡) − 𝐶𝑐 𝜑 = 𝑁 (𝑦𝑛 + 𝑦𝑛
𝑖𝑚𝑝

− 𝑦𝑖 − 𝑦𝑖
𝑖𝑚𝑝

) − 𝐶𝑐
𝑦𝑛 − 𝑦𝑛−1

𝛥𝑥
 (8) 

 

In this equation: 𝑦𝑛
𝑡𝑜𝑡 , 𝑦𝑖

𝑡𝑜𝑡  –  distance of nodes 𝑛 and 𝑖 from the direction 𝑥 after 

deformation; 

 𝑦𝑛, 𝑦𝑛−1, 𝑦𝑖  –  displacements of 𝑛, 𝑛 − 1 and 𝑖 node by loading. 
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Deformation equation of the member can be determined by calculating the displacement 

of node 𝑖 + 1, if deviation, tangent inclination and value of bending moment is known for 

node 𝑖 (Fig. 5). 
 

𝑦𝑖+1 = 𝑦𝑖 + 𝛥𝑦𝑖
′ + 𝛥𝑦𝑖(𝑀) (9) 

 

Displacement increment is equal to the sum of the previous increment and additional 

increment (caused by bending moment). Value 𝛥𝑦𝑖
′ can be determined as a difference of 

two previous known displacement: 
 

𝛥𝑦𝑖
′ = 𝑦𝑖 − 𝑦𝑖−1. (10) 

 

 
Figure 5. Calculation of the displacement increment for node i+1 

 

In this case additional increment is considered taking only the bending moment in 

calculation. For more accurate analysis it is necessary to take into account the shear force 

and the temperature difference influence. The displacement caused by bending moment 

represents majority of the total transverse displacement for the members mainly subjected 

to bending, so it is reasonable to disregard other influences. 

 

If cantilever with length of 𝛥𝑥, subjected to bending moment 𝑀𝑖 at free end is considered, 

using the principle of virtual forces and the principle of superposition, the angle of rotation 

of free end can be derived, and also the angle increment of nodes 𝑖 and 𝑖 + 1: 
 

𝛥𝜑𝑖 =
𝑀𝑖  𝛥𝑥

𝐸𝐼
. (11) 

 

Using assumption of small angles (sin 𝜑 = tg 𝜑 = 𝜑), additional increment 𝛥𝑦𝑖(𝑀) can 

be derived by multiplying the previous equation with 𝛥𝑥: 
 

𝛥𝑦𝑖(𝑀) = 𝛥𝜑𝑖  𝛥𝑥 =
𝑀𝑖𝛥𝑥

2

𝐸𝐼
. (12) 

 

By replacing equations (10) and (12) into the equation (9) relation between displacement 

of three successive nodes is: 
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𝑦𝑖+1 − 2 𝑦𝑖 + 𝑦𝑖−1 −
𝑀𝑖  𝛥𝑥

2

𝐸𝐼
= 0. (13) 

 

When relations (8) and (7) are introduced into the previous equation and expressed in 

appropriate form for matrix calculus, it becomes: 
 

𝑦𝑖−1 + 𝑦𝑖 (−2 +
𝑁 𝛥𝑥2

𝐸𝐼
) + 𝑦𝑖+1 + 𝑦𝑛−1 (−

𝐶𝑐 𝛥𝑥

𝐸𝐼
) + 

+𝑦𝑛 (−
𝑁 𝛥𝑥2

𝐸𝐼
+
𝐶𝑐  𝛥𝑥

𝐸𝐼
) + 𝑦𝑛

𝑖𝑚𝑝 𝑁 𝛥𝑥
2

𝐸𝐼
(−1 +

𝑖2

𝑛2
) = 0 

(14) 

 

If the term next to 𝑦𝑖 is marked as 𝑘𝑖, the term next to 𝑦𝑛−1 as 𝑘𝑛−1, term next to 𝑦𝑛 as 𝑘𝑛, 

and free term as 𝑔𝑖+1, previous equation can be written as: 
 

𝑦𝑖−1 + 𝑘𝑖 𝑦𝑖 + 𝑦𝑖+1 + 𝑘𝑛−1 𝑦𝑛−1 + 𝑘𝑛 𝑦𝑛 + 𝑔𝑖+1 = 0. (15) 
 

The equation can be written for 𝑖 = 1, 𝑛 − 1, but for 𝑖 = 0 and 𝑖 = 𝑛 this cannot be done 

because previous and next node does not exist. 

 

 

5. BOUNDARY CONDITION AND MATRIX EQUATION 
 

Conditional equation for 𝑖 = 0 can be written by considering the first cantilever 

(0 − 1).  Displacement 𝑦1 can be calculated as a deflection of the free end, if cantilever is 

subjected to bending moment at that point only. By using the principle of virtual forces 

for deflection determination, and condition of indivertible node 𝑖 = 0 (𝑦0 = 0), it can be 

calculated that: 
 

𝑦1 =
𝑀0𝛥𝑥

2

2 𝐸𝐼
 (16) 

 

and, if equations (8) and (7) are introduced into equation (16), the next equation can be 

derived: 
 

𝑦1 + 𝑦𝑛−1 (−
𝐶𝑐  𝛥𝑥

2 𝐸𝐼
) + 𝑦𝑛 (−

𝑁 𝛥𝑥2

2 𝐸𝐼
+
𝐶𝑐  𝛥𝑥

2 𝐸𝐼
) + 𝑦𝑛

𝑖𝑚𝑝 𝑁 𝛥𝑥
2

2 𝐸𝐼
(−1) = 0. (17) 

 

As for basic equation, the terms next to the unknown and free term are necessary to mark, 

but now instead of 𝑘𝑛−1, 𝑘𝑛 and 𝑔𝑖+1 their half values emerge. Hence, relation (17) 
becomes: 
 

𝑦1 + 𝑦𝑛−1
𝑘𝑛−1
2

+ 𝑦𝑛
𝑘𝑛
2
+
𝑔1
2
= 0. (18) 

 

System of equations (15) and (18) can be written, for the purpose of a more convenient 

implementation, in the matrix form, taking into consideration that in the last two rows 

some elements should be added up because of interference in the matrix. 
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[
 
 
 
 
 
 
 
 
 
 0 1 0 0 ⋯ 0

𝑘𝑛−1
2

𝑘𝑛
2

1 𝑘𝑖 1 0 ⋯ 0 𝑘𝑛−1 𝑘𝑛

0 1 𝑘𝑖 1 ⋯ 0 𝑘𝑛−1 𝑘𝑛

0 0 1 𝑘𝑖 ⋯ 0 𝑘𝑛−1 𝑘𝑛
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 𝑘𝑖 1 + 𝑘𝑛−1 𝑘𝑛

0 0 0 0 ⋯ 1 𝑘𝑖 + 𝑘𝑛−1 1 + 𝑘𝑛
/ / / / ⋯ / / / ]

 
 
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

𝑦0
𝑦1
𝑦2
𝑦3
⋮

𝑦𝑛−2
𝑦𝑛−1
𝑦𝑛 }

 
 
 

 
 
 

+

{
 
 
 
 

 
 
 
 

𝑔1
2
𝑔2
𝑔3
𝑔4
⋮

𝑔𝑛−1
𝑔𝑛
𝑔𝑛+1}

 
 
 
 

 
 
 
 

= 0 (19) 

 

 

The matrix of coefficients in matrix equation (19) misses last row. Boundary condition 

for node 𝑖 = 𝑛 is not possible to write because the deflection 𝑦𝑛 is not limited. But, the 

equation can be simplified using known deflection 𝑦0 = 0. By taking out the first column 

and last row of matrix of coefficients, and taking out the term 𝑦0 from vector of deflection 

and term 𝑔𝑛+1 from vector of free terms, system of equation in order of 𝑛 is obtained: 
 
 

[
 
 
 
 
 
 
 
 
 1 0 0 ⋯ 0

𝑘𝑛−1
2

𝑘𝑛
2

𝑘𝑖 1 0 ⋯ 0 𝑘𝑛−1 𝑘𝑛

1 𝑘𝑖 1 ⋯ 0 𝑘𝑛−1 𝑘𝑛

0 1 𝑘𝑖 ⋯ 0 𝑘𝑛−1 𝑘𝑛
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ 𝑘𝑖 1 + 𝑘𝑛−1 𝑘𝑛

0 0 0 ⋯ 1 𝑘𝑖 + 𝑘𝑛−1 1 + 𝑘𝑛]
 
 
 
 
 
 
 
 
 

{
  
 

  
 

𝑦1
𝑦2
𝑦3
⋮

𝑦𝑛−2
𝑦𝑛−1
𝑦𝑛 }

  
 

  
 

+

{
 
 
 

 
 
 

𝑔1
2
𝑔2
𝑔3
𝑔4
⋮

𝑔𝑛−1
𝑔𝑛 }

 
 
 

 
 
 

= 0 (20) 

 

 

If the matrix of coefficients is marked with [𝐊], the vector of unknown deflections with 
{𝐲},  and vector of free terms with {𝐠}, system (20) can be presented in simple form: 
 
 

[𝐊]{𝐲} + {𝐠} = 0 (21) 
 

Equation (21) has a unique solution and its solving results with 𝑛 unknown deflections: 
 

 

{𝐲} = −[𝐊]−1{𝐠} (22) 
 

 

By replacing the calculated deflections into the relation (8), bending moments at nodes 

and stress values at specific points can be obtained. If distribution of bending moments 

along the member is known, buckling length can be obtained by finding the zero point. 
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6. STRESS DETERMINATION IN BRIDGE STRUT 
 

In order to constitute and solve the matrix equation, a program Buck_memb has been 

written using the software 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎 7.0. The design for the strut in analysed example 

[3] is provided and welded box-shaped cross-section is adopted (Fig. 6). 
 

 
Figure 6. Cross-section of the strut D3 

 

Properties: 2 𝑙 = 2 ∗ 4 881.5 𝑚𝑚 = 9 763 𝑚𝑚 – length of the strut; 

 𝐴 = 139.2 𝑐𝑚2; 

 𝐼𝑥 = 11 422 𝑐𝑚4; 

 𝑊𝑥 = 878.6 𝑐𝑚3; 

 𝐸 = 21 000 𝑘𝑁 𝑐𝑚2⁄ ; 

 𝑓𝑦 = 24 𝑘𝑁 𝑐𝑚2⁄ . 

 

Using relations (2), (3) and (4), total geometrical imperfection for the analysed member 

is obtained as 𝛿0 = 2.96 𝑐𝑚. According to the type of the cross-section of the member the 

value of the buckling curve coefficient [5] is 𝛼 = 0.489. 

 

Rotational rigidity of the connection at the strut joint is determined by approximate 

method, using displacement capacity of a fitted bolt under shear load. The connection is 

designed with 16 𝑀24 bolts with grade 10.9, with double gusset plate 18 𝑚𝑚  

thick (Fig. 7). The model was analysed using Tower 7.0 Demo software and rigidity of the 

connection is estimated as 𝐶𝑐 = 540 000 𝑘𝑁𝑐𝑚 𝑟𝑎𝑑⁄ . 

 

 
Figure 7. Model of the joint connection (drawing) 
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Using the programme Buck_memb for different values of compression force, lateral 

displacements, bending moments and stresses are obtained. Result are shown in Table 1 

and graphically (Fig. 8). Verification of the calculation is done using software Tower 7.0 

Demo. 
 

Table 1. Displacement, bending moment and normal stress  

for different values of compression force 

 N [kN] ymax [mm] Mmax [kNm] σmax [kN/cm2] 

Buck_memb 

0.0 0.00 0.00 0.00 

500.0 4.04 11.01 4.84 

1 000.0 9.32 25.58 10.10 

1 500.0 16.52 45.69 15.98 

2 070.7 28.74 80.25 24.01 

Tower 7.0 2 070.7 28.70 80.17 24.00 

 

 
Figure 8. Distribution of the bending moment and displacements along the strut 

 for applied force N=2070.7 kN 
 

 

7. CONCLUSION 
 

The highest value of plasticisation force in the strut is 𝑁𝑚𝑎𝑥 = 2 070.7 𝑘𝑁. Considering 

that governing load is combination of basic loads (𝜈𝐼 = 1.50), allowed force, and 

utilization rate of the strut D3 is: 
 

𝑁𝑑𝑜𝑝 =
𝑁𝑚𝑎𝑥

𝜈𝐼
=
2 070.7

1.50
= 1 380.5 𝑘𝑁;   

𝑁𝐷3

𝑁𝑑𝑜𝑝

=
1 048.9

1 380.5
= 76.0 % (23) 

 

Distance from the null point of bending moment to the origin of coordinate system is 𝑥0 =
384.6 𝑐𝑚, so the buckling length coefficient has value (assumed value in example [3] is 

𝛽 = 0.80): 
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𝛽 =
𝑥0
𝑙
=

384.6

488.15
= 0.79 (24) 

 

Application of numerical calculation methods is important in the cases of very complex 

problems, when analytical expression do not provide framework for influences of all 

relevant parameters [5]. When it comes to the simple girders the problem can be solved 

using second order theory equations, where material is assumed to be homogeneous, 

isotropic and elastic. However, if the plastic behaviour of material is included in the 

analysis, the problems is complicated to some extent, which calls for the application of 

numerical methods for the purpose of taking into account of all the relevant influences. 

 

The proposed numerical procedure of determination of the stress state for axial loaded 

members allows implementation of the plastic and viscous behaviour of the member, 

whereby the problem is rendered somewhat more complex than in the case of the material 

having elastic properties, which was treated in this paper. 
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НУМЕРИЧКО МОДЕЛИРАЊЕ ПРИТИСНУТЕ 

ДИЈАГОНАЛЕ ЧЕЛИЧНЕ РЕШЕТКЕ 

 
Резиме: Челичне конструкције често садрже аксијално притиснуте елементе који 

захтевају анализу стабилности. Постојећа аналитичка решења проблема 

стабилности углавном су заснована на грубим претпоставкама и не узимају у обзир 

геометријске несавршености елемената и полукруте везе између њих на адекватан 

начин. У овом раду је анализирана притиснута дијагонала железничког 

решеткастог моста применом методе коначних разлика и теорије другог реда, и 

добијене су вредности напона, померања и дужине извијања. 
 

Кључне речи: Извијање, МКР, полукруте везе, геометријскa имперфекцијa 


